ranjeetjha's picture
Upload 19 files (#1)
ab80e91 verified
"""
Utility functions for the Universal Image Classifier
"""
import torch
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
import json
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix, classification_report
import numpy as np
from typing import List, Dict, Tuple, Optional
from pathlib import Path
import pandas as pd
def load_dataset_from_folder(
data_dir: str,
class_names: Optional[List[str]] = None,
valid_extensions: Tuple[str, ...] = ('.jpg', '.jpeg', '.png', '.bmp', '.tiff')
) -> Tuple[List[str], List[int], List[str]]:
"""
Load dataset from folder structure:
data_dir/
β”œβ”€β”€ class1/
β”‚ β”œβ”€β”€ img1.jpg
β”‚ └── img2.jpg
└── class2/
β”œβ”€β”€ img3.jpg
└── img4.jpg
Returns:
image_paths: List of image file paths
labels: List of corresponding class indices
class_names: List of class names
"""
data_path = Path(data_dir)
if not data_path.exists():
raise ValueError(f"Data directory {data_dir} does not exist")
# Get class directories
class_dirs = [d for d in data_path.iterdir() if d.is_dir()]
class_dirs.sort()
if class_names is None:
class_names = [d.name for d in class_dirs]
image_paths = []
labels = []
for class_idx, class_dir in enumerate(class_dirs):
class_name = class_dir.name
if class_name not in class_names:
continue
class_label = class_names.index(class_name)
# Get all image files in this class directory
for img_file in class_dir.iterdir():
if img_file.suffix.lower() in valid_extensions:
image_paths.append(str(img_file))
labels.append(class_label)
print(f"Loaded {len(image_paths)} images from {len(class_names)} classes")
for i, class_name in enumerate(class_names):
count = labels.count(i)
print(f" {class_name}: {count} images")
return image_paths, labels, class_names
def load_dataset_from_csv(
csv_file: str,
image_col: str = 'image_path',
label_col: str = 'label',
class_names: Optional[List[str]] = None
) -> Tuple[List[str], List[int], List[str]]:
"""
Load dataset from CSV file with columns for image paths and labels
Args:
csv_file: Path to CSV file
image_col: Column name for image paths
label_col: Column name for labels
class_names: Optional list of class names
Returns:
image_paths: List of image file paths
labels: List of corresponding class indices
class_names: List of class names
"""
df = pd.read_csv(csv_file)
image_paths = df[image_col].tolist()
# Handle both string and numeric labels
if df[label_col].dtype == 'object': # String labels
unique_labels = sorted(df[label_col].unique())
if class_names is None:
class_names = unique_labels
label_to_idx = {label: idx for idx, label in enumerate(class_names)}
labels = [label_to_idx[label] for label in df[label_col]]
else: # Numeric labels
labels = df[label_col].tolist()
if class_names is None:
class_names = [f"class_{i}" for i in range(max(labels) + 1)]
print(f"Loaded {len(image_paths)} images from CSV")
return image_paths, labels, class_names
def visualize_dataset(
image_paths: List[str],
labels: List[int],
class_names: List[str],
num_samples: int = 16,
figsize: Tuple[int, int] = (12, 8)
):
"""Visualize random samples from the dataset"""
import random
# Sample random images
indices = random.sample(range(len(image_paths)), min(num_samples, len(image_paths)))
rows = int(np.sqrt(num_samples))
cols = int(np.ceil(num_samples / rows))
fig, axes = plt.subplots(rows, cols, figsize=figsize)
axes = axes.flatten() if num_samples > 1 else [axes]
for i, idx in enumerate(indices):
if i >= len(axes):
break
img = Image.open(image_paths[idx]).convert('RGB')
axes[i].imshow(img)
axes[i].set_title(f"{class_names[labels[idx]]}")
axes[i].axis('off')
# Hide unused subplots
for i in range(len(indices), len(axes)):
axes[i].axis('off')
plt.tight_layout()
plt.show()
def plot_class_distribution(labels: List[int], class_names: List[str]):
"""Plot the distribution of classes in the dataset"""
class_counts = [labels.count(i) for i in range(len(class_names))]
plt.figure(figsize=(10, 6))
bars = plt.bar(class_names, class_counts)
plt.title('Class Distribution')
plt.xlabel('Classes')
plt.ylabel('Number of Images')
plt.xticks(rotation=45)
# Add count labels on bars
for bar, count in zip(bars, class_counts):
plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.1,
str(count), ha='center', va='bottom')
plt.tight_layout()
plt.show()
def evaluate_model(
model: torch.nn.Module,
test_loader: DataLoader,
class_names: List[str],
device: str = "cpu"
) -> Dict:
"""Evaluate model performance and generate metrics"""
model.eval()
all_predictions = []
all_labels = []
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
all_predictions.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# Calculate metrics
accuracy = np.mean(np.array(all_predictions) == np.array(all_labels))
# Classification report
report = classification_report(
all_labels, all_predictions,
target_names=class_names,
output_dict=True
)
return {
'accuracy': accuracy,
'predictions': all_predictions,
'true_labels': all_labels,
'classification_report': report
}
def plot_confusion_matrix(
true_labels: List[int],
predictions: List[int],
class_names: List[str],
figsize: Tuple[int, int] = (8, 6)
):
"""Plot confusion matrix"""
cm = confusion_matrix(true_labels, predictions)
plt.figure(figsize=figsize)
sns.heatmap(
cm,
annot=True,
fmt='d',
cmap='Blues',
xticklabels=class_names,
yticklabels=class_names
)
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.tight_layout()
plt.show()
def save_predictions(
predictions: List[int],
image_paths: List[str],
class_names: List[str],
output_file: str
):
"""Save predictions to CSV file"""
df = pd.DataFrame({
'image_path': image_paths,
'predicted_class_id': predictions,
'predicted_class_name': [class_names[pred] for pred in predictions]
})
df.to_csv(output_file, index=False)
print(f"Predictions saved to {output_file}")
def create_model_card(
model_name: str,
model_config: Dict,
training_config: Dict,
performance_metrics: Dict,
class_names: List[str],
dataset_info: str,
output_file: str = "MODEL_CARD.md"
):
"""Create a model card for Hugging Face"""
card_content = f"""---
license: mit
tags:
- image-classification
- pytorch
- computer-vision
datasets:
- custom
metrics:
- accuracy
library_name: pytorch
---
# Universal Image Classifier - {model_name}
## Model Description
This is a {model_name} model trained using the Universal Image Classifier framework. It's designed for flexible image classification tasks and can be easily adapted to different datasets.
## Model Architecture
- **Model Type**: {model_name}
- **Input Size**: {model_config.get('input_height', 64)}x{model_config.get('input_width', 64)}
- **Number of Classes**: {model_config.get('num_classes', len(class_names))}
- **Hidden Dimensions**: {model_config.get('hidden_dim', 128)}
- **Number of Layers**: {model_config.get('num_layers', 4)}
- **Dropout Rate**: {model_config.get('dropout_rate', 0.1)}
- **Batch Normalization**: {model_config.get('use_batch_norm', True)}
## Training Configuration
- **Batch Size**: {training_config.get('batch_size', 32)}
- **Learning Rate**: {training_config.get('learning_rate', 0.001)}
- **Weight Decay**: {training_config.get('weight_decay', 1e-4)}
- **Early Stopping Patience**: {training_config.get('early_stopping_patience', 10)}
## Performance
- **Accuracy**: {performance_metrics.get('accuracy', 'N/A'):.4f}
- **Classes**: {', '.join(class_names)}
## Dataset
{dataset_info}
## Usage
```python
from inference import load_classifier
# Load the model
classifier = load_classifier(
model_path="path/to/model.pth",
config_path="path/to/config.json",
class_names={class_names}
)
# Make predictions
result = classifier.predict("path/to/image.jpg")
print(f"Predicted: {{result['predicted_class']}} ({{result['confidence']:.3f}})")
```
## Training
This model was trained using the Universal Image Classifier framework. To train your own model:
```python
from train import UniversalTrainer
from config import ModelConfig, TrainingConfig, DataConfig
# Configure and train
trainer = UniversalTrainer(model_config, training_config, data_config)
trainer.train(train_dataset, val_dataset, model_name="{model_name}")
```
## Framework
Built with the Universal Image Classifier framework - a flexible PyTorch-based solution for image classification tasks.
## License
MIT License
"""
with open(output_file, 'w') as f:
f.write(card_content)
print(f"Model card saved to {output_file}")
def export_to_huggingface(
model_path: str,
config_path: str,
class_names: List[str],
model_name: str,
output_dir: str = "huggingface_model"
):
"""Export model for Hugging Face Hub"""
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
# Copy model files
import shutil
shutil.copy(model_path, output_path / "pytorch_model.pth")
shutil.copy(config_path, output_path / "config.json")
# Create class names file
with open(output_path / "class_names.json", 'w') as f:
json.dump(class_names, f, indent=2)
# Create inference script
inference_script = '''
from inference import UniversalImageClassifier
import json
def load_model():
"""Load the model for inference"""
with open("class_names.json", "r") as f:
class_names = json.load(f)
classifier = UniversalImageClassifier(
model_path="pytorch_model.pth",
config_path="config.json",
class_names=class_names
)
return classifier
def predict(image_path):
"""Predict image class"""
classifier = load_model()
return classifier.predict(image_path)
'''
with open(output_path / "inference_hf.py", 'w') as f:
f.write(inference_script)
print(f"Model exported to {output_path} for Hugging Face Hub")