Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: samoline/9a5111ea-5a44-439b-9070-bac06e59e04d
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f0ce6115ee7e0eb9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f0ce6115ee7e0eb9_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 250
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: Lin2es/63e5d34a-3684-48f8-93ea-ec686f8aa199
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/f0ce6115ee7e0eb9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 1001
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 159f5c8a-63f7-444e-ba60-57f32d062808
wandb_project: text01
wandb_run: your_name
wandb_runid: 159f5c8a-63f7-444e-ba60-57f32d062808
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

63e5d34a-3684-48f8-93ea-ec686f8aa199

This model is a fine-tuned version of samoline/9a5111ea-5a44-439b-9070-bac06e59e04d on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 1001
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0009 1 0.6967
0.7321 0.2288 250 0.6972
0.7256 0.4576 500 0.6961

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rayonlabs/9a5111ea-5a44-439b-9070-bac06e59e04d-bf26417b6ab05508_dataset_json_X-Amz-Algorithm_AWS4-HMAC-SHA

Adapter
(1)
this model