metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- razhan/DOLMA-speech
metrics:
- wer
model-index:
- name: whisper-base-mzn
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: razhan/DOLMA-speech mazanderani
type: razhan/DOLMA-speech
args: mazanderani
metrics:
- name: Wer
type: wer
value: 0.8149625935162095
whisper-base-mzn
This model is a fine-tuned version of openai/whisper-base on the razhan/DOLMA-speech mazanderani dataset. It achieves the following results on the evaluation set:
- Loss: 1.3368
- Wer: 0.8150
- Cer: 0.3173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 192
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 384
- total_eval_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
No log | 1.0 | 3 | 2.1575 | 1.3606 | 0.7428 |
No log | 2.0 | 6 | 2.1575 | 1.3606 | 0.7428 |
No log | 3.0 | 9 | 1.6346 | 0.9451 | 0.6618 |
2.0051 | 4.0 | 12 | 1.4320 | 0.8414 | 0.3594 |
2.0051 | 5.0 | 15 | 1.3368 | 0.8150 | 0.3173 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0