train_boolq_1745950280

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3260
  • Num Input Tokens Seen: 37097424

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.3
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 123
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 40000

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.3571 0.0943 200 0.3353 186768
0.6655 0.1886 400 1.2637 369808
0.4242 0.2829 600 0.3287 554928
0.2999 0.3772 800 0.3277 746560
0.3501 0.4715 1000 0.3283 932848
0.3099 0.5658 1200 0.3302 1116128
0.3801 0.6601 1400 0.3414 1299664
0.2952 0.7544 1600 0.3291 1481856
0.3585 0.8487 1800 0.3288 1672160
0.3976 0.9430 2000 0.3275 1860608
0.359 1.0372 2200 0.3295 2047984
0.2945 1.1315 2400 0.3282 2230960
0.3179 1.2258 2600 0.3287 2417664
0.3535 1.3201 2800 0.3271 2600368
0.2831 1.4144 3000 0.3374 2786848
0.3071 1.5087 3200 0.3292 2972672
0.3365 1.6030 3400 0.3338 3154640
0.3532 1.6973 3600 0.3458 3339328
0.3734 1.7916 3800 0.3275 3522384
0.294 1.8859 4000 0.3281 3712352
0.3144 1.9802 4200 0.3302 3899328
0.3425 2.0745 4400 0.3273 4085888
0.4222 2.1688 4600 0.3266 4271936
0.2797 2.2631 4800 0.3314 4456320
0.3179 2.3574 5000 0.3278 4638512
0.3202 2.4517 5200 0.3283 4830688
0.304 2.5460 5400 0.3269 5016480
0.3414 2.6403 5600 0.3288 5204048
0.3502 2.7346 5800 0.3281 5383984
0.376 2.8289 6000 0.3293 5574016
0.3344 2.9231 6200 0.3377 5761616
0.3395 3.0174 6400 0.3289 5948128
0.352 3.1117 6600 0.3286 6134304
0.3654 3.2060 6800 0.3271 6319616
0.3445 3.3003 7000 0.3292 6505744
0.3611 3.3946 7200 0.3290 6692208
0.3608 3.4889 7400 0.3350 6875616
0.3623 3.5832 7600 0.3289 7059472
0.2933 3.6775 7800 0.3278 7243472
0.3393 3.7718 8000 0.3299 7428048
0.3473 3.8661 8200 0.3291 7611184
0.3928 3.9604 8400 0.3353 7796112
0.3407 4.0547 8600 0.3320 7979520
0.3312 4.1490 8800 0.3279 8167776
0.2816 4.2433 9000 0.3280 8355856
0.3064 4.3376 9200 0.3321 8543120
0.3669 4.4319 9400 0.3272 8727088
0.3667 4.5262 9600 0.3289 8914992
0.5646 4.6205 9800 0.3886 9095040
0.3517 4.7148 10000 0.3328 9283072
0.3462 4.8091 10200 0.3449 9467600
0.3709 4.9033 10400 0.3676 9653456
0.3385 4.9976 10600 0.3286 9841232
0.3236 5.0919 10800 0.3289 10025504
0.3695 5.1862 11000 0.3284 10216464
0.2978 5.2805 11200 0.3291 10402448
0.2926 5.3748 11400 0.3312 10586976
0.3201 5.4691 11600 0.3283 10770896
0.3963 5.5634 11800 0.3280 10959424
0.3661 5.6577 12000 0.3312 11146816
0.3531 5.7520 12200 0.3316 11328528
0.3431 5.8463 12400 0.3332 11515600
0.2751 5.9406 12600 0.3284 11697056
0.3721 6.0349 12800 0.3386 11884336
0.3374 6.1292 13000 0.3296 12074128
0.3791 6.2235 13200 0.3321 12258064
0.3481 6.3178 13400 0.3273 12443248
0.2563 6.4121 13600 0.3305 12626480
0.2924 6.5064 13800 0.3275 12813808
0.343 6.6007 14000 0.3342 12998256
0.4058 6.6950 14200 0.3272 13180928
0.3372 6.7893 14400 0.3324 13364368
0.3641 6.8835 14600 0.3278 13552272
0.3362 6.9778 14800 0.3312 13735904
0.3351 7.0721 15000 0.3312 13924000
0.343 7.1664 15200 0.3343 14113184
0.348 7.2607 15400 0.3388 14295568
0.3783 7.3550 15600 0.3273 14480560
0.4022 7.4493 15800 0.3331 14664736
0.3086 7.5436 16000 0.3277 14852128
0.338 7.6379 16200 0.3275 15033840
0.3371 7.7322 16400 0.3274 15219136
0.3172 7.8265 16600 0.3261 15404160
0.3308 7.9208 16800 0.3270 15589632
0.2996 8.0151 17000 0.3276 15781760
0.3615 8.1094 17200 0.3266 15967648
0.264 8.2037 17400 0.3272 16155248
0.3241 8.2980 17600 0.3269 16343648
0.3462 8.3923 17800 0.3293 16523360
0.3463 8.4866 18000 0.3384 16709008
0.3472 8.5809 18200 0.3287 16893648
0.3603 8.6752 18400 0.3282 17079824
0.3141 8.7694 18600 0.3294 17265072
0.3251 8.8637 18800 0.3276 17445904
0.3337 8.9580 19000 0.3269 17631504
0.3541 9.0523 19200 0.3276 17818512
0.3245 9.1466 19400 0.3277 18005200
0.3733 9.2409 19600 0.3266 18190416
0.3328 9.3352 19800 0.3274 18373200
0.3801 9.4295 20000 0.3274 18556672
0.3399 9.5238 20200 0.3290 18742816
0.3368 9.6181 20400 0.3276 18930224
0.3135 9.7124 20600 0.3280 19115456
0.3251 9.8067 20800 0.3301 19296016
0.3095 9.9010 21000 0.3281 19482416
0.3491 9.9953 21200 0.3279 19668640
0.324 10.0896 21400 0.3267 19860880
0.3144 10.1839 21600 0.3266 20052672
0.335 10.2782 21800 0.3275 20236224
0.3269 10.3725 22000 0.3287 20421632
0.3284 10.4668 22200 0.3282 20608320
0.3202 10.5611 22400 0.3301 20788112
0.3279 10.6554 22600 0.3290 20969744
0.3447 10.7496 22800 0.3268 21151648
0.3432 10.8439 23000 0.3269 21335600
0.353 10.9382 23200 0.3271 21522352
0.3276 11.0325 23400 0.3275 21709568
0.325 11.1268 23600 0.3270 21894592
0.3204 11.2211 23800 0.3273 22079344
0.3423 11.3154 24000 0.3278 22269152
0.3098 11.4097 24200 0.3266 22451760
0.3876 11.5040 24400 0.3276 22639312
0.3428 11.5983 24600 0.3287 22821728
0.3634 11.6926 24800 0.3275 23005696
0.296 11.7869 25000 0.3260 23192112
0.3063 11.8812 25200 0.3262 23373840
0.3055 11.9755 25400 0.3281 23559968
0.3414 12.0698 25600 0.3334 23743680
0.3125 12.1641 25800 0.3279 23931472
0.3537 12.2584 26000 0.3308 24118800
0.3198 12.3527 26200 0.3270 24308976
0.2884 12.4470 26400 0.3279 24493584
0.3503 12.5413 26600 0.3273 24679264
0.3456 12.6355 26800 0.3280 24861136
0.3058 12.7298 27000 0.3267 25046496
0.3181 12.8241 27200 0.3272 25230592
0.3211 12.9184 27400 0.3268 25411904
0.3335 13.0127 27600 0.3284 25595280
0.3438 13.1070 27800 0.3360 25777696
0.3493 13.2013 28000 0.3276 25963552
0.3277 13.2956 28200 0.3268 26150464
0.3618 13.3899 28400 0.3277 26335552
0.3095 13.4842 28600 0.3290 26524096
0.3783 13.5785 28800 0.3298 26713392
0.3054 13.6728 29000 0.3292 26900464
0.3617 13.7671 29200 0.3308 27087040
0.3589 13.8614 29400 0.3291 27270960
0.3306 13.9557 29600 0.3292 27457936
0.3116 14.0500 29800 0.3331 27639216
0.3343 14.1443 30000 0.3289 27829056
0.363 14.2386 30200 0.3274 28019840
0.3075 14.3329 30400 0.3264 28205616
0.3307 14.4272 30600 0.3274 28390464
0.3363 14.5215 30800 0.3279 28571424
0.3314 14.6157 31000 0.3272 28758128
0.3598 14.7100 31200 0.3294 28942096
0.3207 14.8043 31400 0.3290 29127440
0.3102 14.8986 31600 0.3290 29310016
0.2936 14.9929 31800 0.3286 29497520
0.3225 15.0872 32000 0.3301 29680160
0.3111 15.1815 32200 0.3300 29872080
0.2723 15.2758 32400 0.3283 30060048
0.3502 15.3701 32600 0.3284 30243024
0.3462 15.4644 32800 0.3277 30433968
0.3086 15.5587 33000 0.3275 30617936
0.3572 15.6530 33200 0.3278 30802960
0.3382 15.7473 33400 0.3282 30985296
0.3195 15.8416 33600 0.3279 31168496
0.2936 15.9359 33800 0.3295 31350688
0.316 16.0302 34000 0.3288 31530704
0.3678 16.1245 34200 0.3289 31718960
0.3434 16.2188 34400 0.3285 31901696
0.3191 16.3131 34600 0.3290 32092528
0.2926 16.4074 34800 0.3287 32279920
0.3153 16.5017 35000 0.3287 32461952
0.3194 16.5959 35200 0.3286 32647696
0.2946 16.6902 35400 0.3288 32828656
0.3516 16.7845 35600 0.3290 33016320
0.3322 16.8788 35800 0.3295 33202224
0.2848 16.9731 36000 0.3288 33385424
0.3162 17.0674 36200 0.3279 33572672
0.3277 17.1617 36400 0.3288 33759120
0.3295 17.2560 36600 0.3283 33946224
0.3543 17.3503 36800 0.3300 34137504
0.291 17.4446 37000 0.3289 34322448
0.3199 17.5389 37200 0.3286 34506880
0.3043 17.6332 37400 0.3295 34692032
0.272 17.7275 37600 0.3287 34873984
0.3184 17.8218 37800 0.3295 35058576
0.296 17.9161 38000 0.3284 35245152
0.3044 18.0104 38200 0.3294 35431232
0.2966 18.1047 38400 0.3291 35615248
0.2675 18.1990 38600 0.3291 35798688
0.3953 18.2933 38800 0.3287 35984224
0.3121 18.3876 39000 0.3288 36168064
0.284 18.4818 39200 0.3287 36351216
0.3022 18.5761 39400 0.3288 36537456
0.3618 18.6704 39600 0.3286 36723376
0.3315 18.7647 39800 0.3283 36910256
0.3403 18.8590 40000 0.3286 37097424

Framework versions

  • PEFT 0.15.2.dev0
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_1745950280

Adapter
(481)
this model

Dataset used to train rbelanec/train_boolq_1745950280