train_boolq_1753094165

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1533
  • Num Input Tokens Seen: 21342336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.7445 0.5002 1061 0.2372 1069568
0.2202 1.0005 2122 0.2001 2133248
0.1428 1.5007 3183 0.1845 3194016
0.1635 2.0009 4244 0.1737 4266592
0.1989 2.5012 5305 0.1689 5343200
0.1422 3.0014 6366 0.1670 6407840
0.2293 3.5017 7427 0.1613 7476544
0.1897 4.0019 8488 0.1626 8540672
0.1142 4.5021 9549 0.1573 9613088
0.0582 5.0024 10610 0.1572 10682528
0.1723 5.5026 11671 0.1558 11757792
0.0985 6.0028 12732 0.1557 12820704
0.1387 6.5031 13793 0.1552 13892416
0.2209 7.0033 14854 0.1540 14957120
0.1787 7.5035 15915 0.1533 16020704
0.0452 8.0038 16976 0.1543 17090912
0.2625 8.5040 18037 0.1536 18157184
0.0591 9.0042 19098 0.1539 19222688
0.1612 9.5045 20159 0.1538 20290176

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
23
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_1753094165

Adapter
(971)
this model