train_boolq_1753094167

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1641
  • Num Input Tokens Seen: 21342336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.7593 0.5002 1061 0.2250 1069568
0.1768 1.0005 2122 0.1875 2133248
0.1648 1.5007 3183 0.1822 3194016
0.1705 2.0009 4244 0.1641 4266592
0.0984 2.5012 5305 0.1677 5343200
0.1156 3.0014 6366 0.1647 6407840
0.1606 3.5017 7427 0.1721 7476544
0.0845 4.0019 8488 0.1736 8540672
0.0972 4.5021 9549 0.1735 9613088
0.0107 5.0024 10610 0.1824 10682528
0.1973 5.5026 11671 0.1916 11757792
0.0982 6.0028 12732 0.1825 12820704
0.1888 6.5031 13793 0.1930 13892416
0.2615 7.0033 14854 0.1939 14957120
0.1862 7.5035 15915 0.1987 16020704
0.0053 8.0038 16976 0.2059 17090912
0.2801 8.5040 18037 0.2077 18157184
0.0042 9.0042 19098 0.2077 19222688
0.1154 9.5045 20159 0.2080 20290176

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
22
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_1753094167

Adapter
(971)
this model