train_boolq_1755555080

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3287
  • Num Input Tokens Seen: 21342336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
1.2842 0.5002 1061 1.2705 1069568
0.3203 1.0005 2122 0.3713 2133248
0.3396 1.5007 3183 0.3413 3194016
0.3162 2.0009 4244 0.3389 4266592
0.3763 2.5012 5305 0.3402 5343200
0.3416 3.0014 6366 0.3455 6407840
0.3181 3.5017 7427 0.3338 7476544
0.319 4.0019 8488 0.3427 8540672
0.3932 4.5021 9549 0.3342 9613088
0.3826 5.0024 10610 0.3316 10682528
0.3462 5.5026 11671 0.3337 11757792
0.3193 6.0028 12732 0.3320 12820704
0.3118 6.5031 13793 0.3314 13892416
0.2944 7.0033 14854 0.3305 14957120
0.3672 7.5035 15915 0.3302 16020704
0.2215 8.0038 16976 0.3287 17090912
0.3548 8.5040 18037 0.3313 18157184
0.3066 9.0042 19098 0.3300 19222688
0.3451 9.5045 20159 0.3298 20290176

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_1755555080

Adapter
(2007)
this model