train_codealpacapy_1755551519

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the codealpacapy dataset. It achieves the following results on the evaluation set:

  • Loss: 4.8186
  • Num Input Tokens Seen: 12472912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
8.26 0.5 954 8.4784 616992
7.2055 1.0 1908 6.7617 1248304
5.7336 1.5 2862 6.1830 1877040
5.889 2.0 3816 5.9066 2497016
6.3024 2.5 4770 5.7254 3129368
5.6745 3.0 5724 5.5857 3742552
5.552 3.5 6678 5.4694 4361944
4.9018 4.0 7632 5.3500 4985200
5.0486 4.5 8586 5.2432 5611760
5.3254 5.0 9540 5.1530 6233920
4.9765 5.5 10494 5.0725 6849184
5.0447 6.0 11448 5.0027 7478504
4.4829 6.5 12402 4.9468 8083560
4.8278 7.0 13356 4.9016 8722744
4.4256 7.5 14310 4.8703 9345976
4.8333 8.0 15264 4.8446 9977520
4.065 8.5 16218 4.8296 10604656
5.2516 9.0 17172 4.8221 11225416
4.5529 9.5 18126 4.8194 11845704
4.9849 10.0 19080 4.8186 12472912

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_codealpacapy_1755551519

Adapter
(2020)
this model