train_mnli_1753093711

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the mnli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1169
  • Num Input Tokens Seen: 347859920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.3645 0.5 44179 0.3380 17403808
0.2859 1.0 88358 0.2381 34786008
0.1129 1.5 132537 0.1936 52165240
0.1375 2.0 176716 0.1687 69564424
0.1106 2.5 220895 0.1551 86951080
0.136 3.0 265074 0.1450 104352808
0.1519 3.5 309253 0.1369 121746504
0.1935 4.0 353432 0.1335 139123792
0.1464 4.5 397611 0.1286 156526672
0.1063 5.0 441790 0.1246 173916408
0.0987 5.5 485969 0.1229 191309592
0.1157 6.0 530148 0.1214 208701328
0.1015 6.5 574327 0.1207 226098768
0.1043 7.0 618506 0.1187 243493272
0.1012 7.5 662685 0.1183 260881240
0.1025 8.0 706864 0.1175 278276232
0.0814 8.5 751043 0.1173 295687496
0.1493 9.0 795222 0.1169 313062872
0.1139 9.5 839401 0.1170 330444056
0.0418 10.0 883580 0.1169 347859920

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_mnli_1753093711

Adapter
(971)
this model