train_mnli_1753271392

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the mnli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0867
  • Num Input Tokens Seen: 347859920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2676 0.5 44179 0.0973 17403808
0.164 1.0 88358 0.0907 34786008
0.0055 1.5 132537 0.1002 52165240
0.118 2.0 176716 0.0867 69564424
0.0015 2.5 220895 0.1152 86951080
0.0935 3.0 265074 0.1064 104352808
0.0105 3.5 309253 0.1427 121746504
0.0011 4.0 353432 0.1456 139123792
0.0789 4.5 397611 0.1977 156526672
0.0003 5.0 441790 0.1803 173916408
0.0001 5.5 485969 0.2100 191309592
0.0002 6.0 530148 0.2051 208701328
0.0001 6.5 574327 0.2591 226098768
0.0 7.0 618506 0.2438 243493272
0.0 7.5 662685 0.2963 260881240
0.0 8.0 706864 0.3234 278276232
0.0 8.5 751043 0.3484 295687496
0.0 9.0 795222 0.3621 313062872
0.0 9.5 839401 0.3940 330444056
0.0 10.0 883580 0.3969 347859920

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_mnli_1753271392

Adapter
(971)
this model