train_multirc_1753094164

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the multirc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1492
  • Num Input Tokens Seen: 132272272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2959 0.5 3065 0.1770 6639424
0.1984 1.0 6130 0.1572 13255424
0.0889 1.5 9195 0.1520 19871232
0.1146 2.0 12260 0.1492 26471216
0.1268 2.5 15325 0.1545 33075856
0.1007 3.0 18390 0.1629 39694112
0.1521 3.5 21455 0.1603 46313216
0.006 4.0 24520 0.1501 52929744
0.3003 4.5 27585 0.1589 59549072
0.1177 5.0 30650 0.1592 66152480
0.0486 5.5 33715 0.1672 72765696
0.0755 6.0 36780 0.1772 79389648
0.0772 6.5 39845 0.1912 86008784
0.0286 7.0 42910 0.1884 92621824
0.1522 7.5 45975 0.1887 99237152
0.0034 8.0 49040 0.1856 105830544
0.0042 8.5 52105 0.1977 112458064
0.0036 9.0 55170 0.1930 119047920
0.1249 9.5 58235 0.1925 125686064
0.0941 10.0 61300 0.1924 132272272

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
21
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_multirc_1753094164

Adapter
(971)
this model