train_qqp_1753094139

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qqp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0913
  • Num Input Tokens Seen: 250787112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1238 0.5 40933 0.1127 12552544
0.1039 1.0 81866 0.1053 25087944
0.0958 1.5 122799 0.0913 37621672
0.0725 2.0 163732 0.0958 50164864
0.0595 2.5 204665 0.1253 62700096
0.0661 3.0 245598 0.1075 75242048
0.0009 3.5 286531 0.1315 87769248
0.059 4.0 327464 0.1418 100320328
0.0005 4.5 368397 0.1872 112855464
0.0018 5.0 409330 0.1745 125387608
0.0009 5.5 450263 0.1917 137931704
0.0001 6.0 491196 0.2095 150463800
0.0 6.5 532129 0.2719 163003576
0.0063 7.0 573062 0.2258 175543400
0.0 7.5 613995 0.2751 188096200
0.0001 8.0 654928 0.2579 200622552
0.0 8.5 695861 0.3145 213151000
0.0 9.0 736794 0.3225 225701792
0.0 9.5 777727 0.3955 238243968
0.0 10.0 818660 0.4010 250787112

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qqp_1753094139

Adapter
(971)
this model