train_qqp_1753094140

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qqp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0982
  • Num Input Tokens Seen: 250787112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0894 0.5 40933 0.1297 12552544
0.2547 1.0 81866 0.1199 25087944
0.0632 1.5 122799 0.1031 37621672
0.0726 2.0 163732 0.1010 50164864
0.1418 2.5 204665 0.1057 62700096
0.0879 3.0 245598 0.1007 75242048
0.1207 3.5 286531 0.1086 87769248
0.2482 4.0 327464 0.0982 100320328
0.1084 4.5 368397 0.1174 112855464
0.1453 5.0 409330 0.1066 125387608
0.0404 5.5 450263 0.1204 137931704
0.063 6.0 491196 0.1151 150463800
0.0053 6.5 532129 0.1377 163003576
0.0088 7.0 573062 0.1222 175543400
0.0026 7.5 613995 0.1412 188096200
0.0033 8.0 654928 0.1379 200622552
0.0026 8.5 695861 0.1420 213151000
0.1073 9.0 736794 0.1450 225701792
0.0012 9.5 777727 0.1450 238243968
0.0753 10.0 818660 0.1456 250787112

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qqp_1753094140

Adapter
(971)
this model