train_rte_1754652145

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the rte dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1820
  • Num Input Tokens Seen: 3481336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
6.7786 0.5009 281 6.3206 176032
2.0606 1.0018 562 2.2780 349200
0.8595 1.5027 843 0.5880 524208
0.4327 2.0036 1124 0.3796 699264
0.239 2.5045 1405 0.2867 873600
0.196 3.0053 1686 0.2456 1048184
0.2079 3.5062 1967 0.2240 1223864
0.2358 4.0071 2248 0.2165 1397624
0.1778 4.5080 2529 0.2119 1570936
0.2055 5.0089 2810 0.1969 1746384
0.2039 5.5098 3091 0.1901 1922384
0.1752 6.0107 3372 0.1904 2092320
0.2109 6.5116 3653 0.1882 2267520
0.1554 7.0125 3934 0.1853 2441688
0.1665 7.5134 4215 0.1854 2614936
0.1686 8.0143 4496 0.1831 2790832
0.1655 8.5152 4777 0.1827 2963888
0.1594 9.0160 5058 0.1820 3137352
0.1618 9.5169 5339 0.1834 3312648

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_rte_1754652145

Adapter
(2009)
this model