train_sst2_1744902621
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0666
- Num Input Tokens Seen: 35754976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.0985 | 0.0528 | 200 | 0.1294 | 178464 |
0.0784 | 0.1056 | 400 | 0.1201 | 357184 |
0.0533 | 0.1584 | 600 | 0.1138 | 535488 |
0.0606 | 0.2112 | 800 | 0.1093 | 714592 |
0.0847 | 0.2640 | 1000 | 0.1067 | 893216 |
0.1027 | 0.3167 | 1200 | 0.1029 | 1072832 |
0.0438 | 0.3695 | 1400 | 0.1000 | 1250688 |
0.1518 | 0.4223 | 1600 | 0.0978 | 1429824 |
0.0699 | 0.4751 | 1800 | 0.0963 | 1608736 |
0.1294 | 0.5279 | 2000 | 0.0943 | 1787552 |
0.0825 | 0.5807 | 2200 | 0.0927 | 1968064 |
0.1149 | 0.6335 | 2400 | 0.0917 | 2145056 |
0.0759 | 0.6863 | 2600 | 0.0909 | 2323552 |
0.1633 | 0.7391 | 2800 | 0.0894 | 2501632 |
0.1118 | 0.7919 | 3000 | 0.0883 | 2681600 |
0.0884 | 0.8447 | 3200 | 0.0867 | 2859456 |
0.0661 | 0.8975 | 3400 | 0.0854 | 3039712 |
0.1093 | 0.9502 | 3600 | 0.0854 | 3218400 |
0.0835 | 1.0029 | 3800 | 0.0842 | 3395632 |
0.1081 | 1.0557 | 4000 | 0.0839 | 3575248 |
0.0535 | 1.1085 | 4200 | 0.0825 | 3754960 |
0.1007 | 1.1613 | 4400 | 0.0823 | 3932752 |
0.0769 | 1.2141 | 4600 | 0.0813 | 4112272 |
0.0649 | 1.2669 | 4800 | 0.0816 | 4291792 |
0.0851 | 1.3197 | 5000 | 0.0804 | 4472784 |
0.0771 | 1.3724 | 5200 | 0.0796 | 4651696 |
0.1098 | 1.4252 | 5400 | 0.0789 | 4829360 |
0.0919 | 1.4780 | 5600 | 0.0785 | 5007920 |
0.082 | 1.5308 | 5800 | 0.0789 | 5188208 |
0.0603 | 1.5836 | 6000 | 0.0782 | 5366384 |
0.1797 | 1.6364 | 6200 | 0.0774 | 5544176 |
0.0652 | 1.6892 | 6400 | 0.0776 | 5723216 |
0.1077 | 1.7420 | 6600 | 0.0767 | 5902896 |
0.0641 | 1.7948 | 6800 | 0.0765 | 6081040 |
0.0756 | 1.8476 | 7000 | 0.0763 | 6259056 |
0.0357 | 1.9004 | 7200 | 0.0760 | 6437904 |
0.1075 | 1.9531 | 7400 | 0.0756 | 6616176 |
0.0756 | 2.0058 | 7600 | 0.0751 | 6793648 |
0.0988 | 2.0586 | 7800 | 0.0754 | 6973744 |
0.0776 | 2.1114 | 8000 | 0.0749 | 7150896 |
0.0671 | 2.1642 | 8200 | 0.0747 | 7330032 |
0.1147 | 2.2170 | 8400 | 0.0756 | 7508816 |
0.0355 | 2.2698 | 8600 | 0.0742 | 7686352 |
0.0903 | 2.3226 | 8800 | 0.0738 | 7864080 |
0.0498 | 2.3753 | 9000 | 0.0737 | 8042928 |
0.0614 | 2.4281 | 9200 | 0.0739 | 8223824 |
0.0712 | 2.4809 | 9400 | 0.0744 | 8402448 |
0.081 | 2.5337 | 9600 | 0.0734 | 8581936 |
0.0724 | 2.5865 | 9800 | 0.0731 | 8762128 |
0.1073 | 2.6393 | 10000 | 0.0731 | 8939600 |
0.0992 | 2.6921 | 10200 | 0.0730 | 9117424 |
0.0661 | 2.7449 | 10400 | 0.0725 | 9299120 |
0.0533 | 2.7977 | 10600 | 0.0726 | 9477968 |
0.0602 | 2.8505 | 10800 | 0.0736 | 9658192 |
0.0609 | 2.9033 | 11000 | 0.0722 | 9837392 |
0.0602 | 2.9561 | 11200 | 0.0723 | 10014320 |
0.078 | 3.0087 | 11400 | 0.0715 | 10191904 |
0.0541 | 3.0615 | 11600 | 0.0714 | 10369824 |
0.0574 | 3.1143 | 11800 | 0.0715 | 10547296 |
0.0681 | 3.1671 | 12000 | 0.0713 | 10726592 |
0.0118 | 3.2199 | 12200 | 0.0713 | 10905760 |
0.0654 | 3.2727 | 12400 | 0.0712 | 11086528 |
0.0981 | 3.3255 | 12600 | 0.0711 | 11266208 |
0.043 | 3.3782 | 12800 | 0.0711 | 11445184 |
0.0349 | 3.4310 | 13000 | 0.0707 | 11623936 |
0.0351 | 3.4838 | 13200 | 0.0712 | 11801312 |
0.0612 | 3.5366 | 13400 | 0.0716 | 11979552 |
0.058 | 3.5894 | 13600 | 0.0705 | 12158496 |
0.0441 | 3.6422 | 13800 | 0.0702 | 12336928 |
0.1011 | 3.6950 | 14000 | 0.0701 | 12516800 |
0.0558 | 3.7478 | 14200 | 0.0701 | 12695648 |
0.1227 | 3.8006 | 14400 | 0.0702 | 12874656 |
0.0549 | 3.8534 | 14600 | 0.0700 | 13053184 |
0.035 | 3.9062 | 14800 | 0.0701 | 13232576 |
0.038 | 3.9590 | 15000 | 0.0700 | 13410176 |
0.0795 | 4.0116 | 15200 | 0.0697 | 13588176 |
0.0595 | 4.0644 | 15400 | 0.0694 | 13766160 |
0.0552 | 4.1172 | 15600 | 0.0698 | 13945776 |
0.0544 | 4.1700 | 15800 | 0.0695 | 14123120 |
0.0521 | 4.2228 | 16000 | 0.0694 | 14300816 |
0.0532 | 4.2756 | 16200 | 0.0693 | 14479248 |
0.0322 | 4.3284 | 16400 | 0.0693 | 14660976 |
0.0679 | 4.3812 | 16600 | 0.0689 | 14839056 |
0.0803 | 4.4339 | 16800 | 0.0690 | 15016048 |
0.0332 | 4.4867 | 17000 | 0.0697 | 15196432 |
0.0381 | 4.5395 | 17200 | 0.0690 | 15374128 |
0.0947 | 4.5923 | 17400 | 0.0688 | 15553776 |
0.0702 | 4.6451 | 17600 | 0.0689 | 15733520 |
0.0904 | 4.6979 | 17800 | 0.0686 | 15911728 |
0.0531 | 4.7507 | 18000 | 0.0690 | 16091728 |
0.0737 | 4.8035 | 18200 | 0.0685 | 16268208 |
0.12 | 4.8563 | 18400 | 0.0685 | 16446704 |
0.0508 | 4.9091 | 18600 | 0.0686 | 16627152 |
0.0784 | 4.9619 | 18800 | 0.0686 | 16806032 |
0.057 | 5.0145 | 19000 | 0.0685 | 16986160 |
0.0367 | 5.0673 | 19200 | 0.0687 | 17164848 |
0.0418 | 5.1201 | 19400 | 0.0686 | 17342800 |
0.0873 | 5.1729 | 19600 | 0.0684 | 17520144 |
0.0997 | 5.2257 | 19800 | 0.0682 | 17697936 |
0.0607 | 5.2785 | 20000 | 0.0681 | 17876496 |
0.0185 | 5.3313 | 20200 | 0.0687 | 18054800 |
0.064 | 5.3841 | 20400 | 0.0684 | 18232176 |
0.0329 | 5.4368 | 20600 | 0.0678 | 18411760 |
0.0557 | 5.4896 | 20800 | 0.0682 | 18590672 |
0.0487 | 5.5424 | 21000 | 0.0689 | 18770000 |
0.0486 | 5.5952 | 21200 | 0.0682 | 18947664 |
0.0357 | 5.6480 | 21400 | 0.0685 | 19127344 |
0.03 | 5.7008 | 21600 | 0.0678 | 19306864 |
0.0772 | 5.7536 | 21800 | 0.0680 | 19485200 |
0.061 | 5.8064 | 22000 | 0.0679 | 19664112 |
0.0942 | 5.8592 | 22200 | 0.0679 | 19843216 |
0.031 | 5.9120 | 22400 | 0.0678 | 20022672 |
0.0648 | 5.9648 | 22600 | 0.0678 | 20201808 |
0.0647 | 6.0174 | 22800 | 0.0677 | 20380512 |
0.0986 | 6.0702 | 23000 | 0.0680 | 20560608 |
0.1126 | 6.1230 | 23200 | 0.0679 | 20739200 |
0.0812 | 6.1758 | 23400 | 0.0679 | 20917728 |
0.0304 | 6.2286 | 23600 | 0.0677 | 21097088 |
0.0544 | 6.2814 | 23800 | 0.0674 | 21275360 |
0.0673 | 6.3342 | 24000 | 0.0676 | 21454048 |
0.0503 | 6.3870 | 24200 | 0.0673 | 21631232 |
0.0772 | 6.4398 | 24400 | 0.0674 | 21809632 |
0.0463 | 6.4925 | 24600 | 0.0674 | 21988192 |
0.0817 | 6.5453 | 24800 | 0.0672 | 22168864 |
0.09 | 6.5981 | 25000 | 0.0676 | 22347392 |
0.0447 | 6.6509 | 25200 | 0.0674 | 22526048 |
0.1004 | 6.7037 | 25400 | 0.0673 | 22704800 |
0.0837 | 6.7565 | 25600 | 0.0674 | 22883200 |
0.0482 | 6.8093 | 25800 | 0.0674 | 23063104 |
0.0759 | 6.8621 | 26000 | 0.0671 | 23242080 |
0.0229 | 6.9149 | 26200 | 0.0674 | 23421312 |
0.0648 | 6.9677 | 26400 | 0.0675 | 23599008 |
0.0823 | 7.0203 | 26600 | 0.0674 | 23777520 |
0.0555 | 7.0731 | 26800 | 0.0672 | 23954320 |
0.0412 | 7.1259 | 27000 | 0.0672 | 24134608 |
0.0743 | 7.1787 | 27200 | 0.0672 | 24312464 |
0.0658 | 7.2315 | 27400 | 0.0673 | 24491696 |
0.0596 | 7.2843 | 27600 | 0.0670 | 24670160 |
0.0333 | 7.3371 | 27800 | 0.0673 | 24848976 |
0.0169 | 7.3899 | 28000 | 0.0673 | 25027536 |
0.0395 | 7.4427 | 28200 | 0.0672 | 25205648 |
0.0467 | 7.4954 | 28400 | 0.0672 | 25384496 |
0.0817 | 7.5482 | 28600 | 0.0674 | 25563856 |
0.0346 | 7.6010 | 28800 | 0.0671 | 25743536 |
0.0321 | 7.6538 | 29000 | 0.0671 | 25921616 |
0.091 | 7.7066 | 29200 | 0.0672 | 26103376 |
0.0146 | 7.7594 | 29400 | 0.0672 | 26283664 |
0.0524 | 7.8122 | 29600 | 0.0668 | 26463440 |
0.0428 | 7.8650 | 29800 | 0.0671 | 26642352 |
0.0454 | 7.9178 | 30000 | 0.0672 | 26822096 |
0.0417 | 7.9706 | 30200 | 0.0673 | 27000688 |
0.0414 | 8.0232 | 30400 | 0.0670 | 27178304 |
0.0434 | 8.0760 | 30600 | 0.0671 | 27356864 |
0.0436 | 8.1288 | 30800 | 0.0670 | 27536640 |
0.0449 | 8.1816 | 31000 | 0.0669 | 27714496 |
0.0607 | 8.2344 | 31200 | 0.0672 | 27893536 |
0.0881 | 8.2872 | 31400 | 0.0671 | 28071808 |
0.0963 | 8.3400 | 31600 | 0.0669 | 28250112 |
0.0301 | 8.3928 | 31800 | 0.0670 | 28428832 |
0.0454 | 8.4456 | 32000 | 0.0670 | 28607296 |
0.0416 | 8.4984 | 32200 | 0.0668 | 28787040 |
0.0382 | 8.5511 | 32400 | 0.0667 | 28966560 |
0.0619 | 8.6039 | 32600 | 0.0669 | 29144544 |
0.1309 | 8.6567 | 32800 | 0.0669 | 29323040 |
0.0829 | 8.7095 | 33000 | 0.0670 | 29502176 |
0.0213 | 8.7623 | 33200 | 0.0668 | 29682560 |
0.0122 | 8.8151 | 33400 | 0.0666 | 29860768 |
0.0547 | 8.8679 | 33600 | 0.0669 | 30038624 |
0.0384 | 8.9207 | 33800 | 0.0667 | 30216384 |
0.0605 | 8.9735 | 34000 | 0.0668 | 30395872 |
0.029 | 9.0261 | 34200 | 0.0668 | 30573920 |
0.0564 | 9.0789 | 34400 | 0.0669 | 30753536 |
0.1248 | 9.1317 | 34600 | 0.0669 | 30931776 |
0.0469 | 9.1845 | 34800 | 0.0668 | 31110592 |
0.1252 | 9.2373 | 35000 | 0.0668 | 31288160 |
0.0335 | 9.2901 | 35200 | 0.0668 | 31465760 |
0.0174 | 9.3429 | 35400 | 0.0667 | 31643168 |
0.0852 | 9.3957 | 35600 | 0.0669 | 31821856 |
0.0511 | 9.4485 | 35800 | 0.0670 | 31998368 |
0.0541 | 9.5013 | 36000 | 0.0669 | 32178176 |
0.0533 | 9.5540 | 36200 | 0.0670 | 32356768 |
0.1163 | 9.6068 | 36400 | 0.0668 | 32537792 |
0.0261 | 9.6596 | 36600 | 0.0667 | 32714880 |
0.0462 | 9.7124 | 36800 | 0.0669 | 32893312 |
0.0218 | 9.7652 | 37000 | 0.0668 | 33071840 |
0.0752 | 9.8180 | 37200 | 0.0669 | 33251936 |
0.019 | 9.8708 | 37400 | 0.0667 | 33431008 |
0.0513 | 9.9236 | 37600 | 0.0667 | 33610816 |
0.0667 | 9.9764 | 37800 | 0.0668 | 33790528 |
0.0793 | 10.0290 | 38000 | 0.0668 | 33967520 |
0.0775 | 10.0818 | 38200 | 0.0666 | 34145280 |
0.0978 | 10.1346 | 38400 | 0.0668 | 34324448 |
0.0125 | 10.1874 | 38600 | 0.0667 | 34503808 |
0.0467 | 10.2402 | 38800 | 0.0668 | 34683552 |
0.0458 | 10.2930 | 39000 | 0.0668 | 34860896 |
0.0469 | 10.3458 | 39200 | 0.0667 | 35039424 |
0.0359 | 10.3986 | 39400 | 0.0669 | 35217792 |
0.0202 | 10.4514 | 39600 | 0.0669 | 35396000 |
0.0659 | 10.5042 | 39800 | 0.0669 | 35575872 |
0.0661 | 10.5569 | 40000 | 0.0669 | 35754976 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_sst2_1744902621
Base model
meta-llama/Meta-Llama-3-8B-Instruct