train_sst2_1744902624
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0613
- Num Input Tokens Seen: 35754976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.0775 | 0.0528 | 200 | 0.1082 | 178464 |
0.065 | 0.1056 | 400 | 0.0971 | 357184 |
0.033 | 0.1584 | 600 | 0.0912 | 535488 |
0.0425 | 0.2112 | 800 | 0.0878 | 714592 |
0.0765 | 0.2640 | 1000 | 0.0852 | 893216 |
0.0447 | 0.3167 | 1200 | 0.0837 | 1072832 |
0.0318 | 0.3695 | 1400 | 0.0800 | 1250688 |
0.134 | 0.4223 | 1600 | 0.0782 | 1429824 |
0.0528 | 0.4751 | 1800 | 0.0767 | 1608736 |
0.1034 | 0.5279 | 2000 | 0.0772 | 1787552 |
0.0663 | 0.5807 | 2200 | 0.0754 | 1968064 |
0.0915 | 0.6335 | 2400 | 0.0740 | 2145056 |
0.0779 | 0.6863 | 2600 | 0.0729 | 2323552 |
0.1393 | 0.7391 | 2800 | 0.0728 | 2501632 |
0.1044 | 0.7919 | 3000 | 0.0727 | 2681600 |
0.0699 | 0.8447 | 3200 | 0.0711 | 2859456 |
0.0595 | 0.8975 | 3400 | 0.0704 | 3039712 |
0.1122 | 0.9502 | 3600 | 0.0720 | 3218400 |
0.0552 | 1.0029 | 3800 | 0.0693 | 3395632 |
0.1083 | 1.0557 | 4000 | 0.0714 | 3575248 |
0.0519 | 1.1085 | 4200 | 0.0679 | 3754960 |
0.0884 | 1.1613 | 4400 | 0.0678 | 3932752 |
0.0529 | 1.2141 | 4600 | 0.0671 | 4112272 |
0.0492 | 1.2669 | 4800 | 0.0692 | 4291792 |
0.0652 | 1.3197 | 5000 | 0.0675 | 4472784 |
0.0462 | 1.3724 | 5200 | 0.0671 | 4651696 |
0.091 | 1.4252 | 5400 | 0.0664 | 4829360 |
0.0725 | 1.4780 | 5600 | 0.0663 | 5007920 |
0.0503 | 1.5308 | 5800 | 0.0676 | 5188208 |
0.0377 | 1.5836 | 6000 | 0.0663 | 5366384 |
0.1499 | 1.6364 | 6200 | 0.0648 | 5544176 |
0.0437 | 1.6892 | 6400 | 0.0658 | 5723216 |
0.0847 | 1.7420 | 6600 | 0.0644 | 5902896 |
0.0463 | 1.7948 | 6800 | 0.0644 | 6081040 |
0.0795 | 1.8476 | 7000 | 0.0649 | 6259056 |
0.0273 | 1.9004 | 7200 | 0.0660 | 6437904 |
0.0974 | 1.9531 | 7400 | 0.0644 | 6616176 |
0.068 | 2.0058 | 7600 | 0.0645 | 6793648 |
0.0664 | 2.0586 | 7800 | 0.0666 | 6973744 |
0.0575 | 2.1114 | 8000 | 0.0644 | 7150896 |
0.0454 | 2.1642 | 8200 | 0.0644 | 7330032 |
0.0931 | 2.2170 | 8400 | 0.0656 | 7508816 |
0.0328 | 2.2698 | 8600 | 0.0634 | 7686352 |
0.0572 | 2.3226 | 8800 | 0.0640 | 7864080 |
0.0508 | 2.3753 | 9000 | 0.0628 | 8042928 |
0.0496 | 2.4281 | 9200 | 0.0655 | 8223824 |
0.0311 | 2.4809 | 9400 | 0.0646 | 8402448 |
0.0569 | 2.5337 | 9600 | 0.0635 | 8581936 |
0.049 | 2.5865 | 9800 | 0.0637 | 8762128 |
0.1127 | 2.6393 | 10000 | 0.0647 | 8939600 |
0.077 | 2.6921 | 10200 | 0.0644 | 9117424 |
0.0508 | 2.7449 | 10400 | 0.0627 | 9299120 |
0.0363 | 2.7977 | 10600 | 0.0624 | 9477968 |
0.0585 | 2.8505 | 10800 | 0.0676 | 9658192 |
0.0482 | 2.9033 | 11000 | 0.0627 | 9837392 |
0.0398 | 2.9561 | 11200 | 0.0621 | 10014320 |
0.0601 | 3.0087 | 11400 | 0.0623 | 10191904 |
0.0354 | 3.0615 | 11600 | 0.0630 | 10369824 |
0.0301 | 3.1143 | 11800 | 0.0640 | 10547296 |
0.0607 | 3.1671 | 12000 | 0.0642 | 10726592 |
0.0082 | 3.2199 | 12200 | 0.0630 | 10905760 |
0.0487 | 3.2727 | 12400 | 0.0629 | 11086528 |
0.0815 | 3.3255 | 12600 | 0.0626 | 11266208 |
0.0259 | 3.3782 | 12800 | 0.0643 | 11445184 |
0.0265 | 3.4310 | 13000 | 0.0621 | 11623936 |
0.0142 | 3.4838 | 13200 | 0.0632 | 11801312 |
0.0517 | 3.5366 | 13400 | 0.0626 | 11979552 |
0.0517 | 3.5894 | 13600 | 0.0625 | 12158496 |
0.0224 | 3.6422 | 13800 | 0.0620 | 12336928 |
0.0834 | 3.6950 | 14000 | 0.0617 | 12516800 |
0.032 | 3.7478 | 14200 | 0.0623 | 12695648 |
0.1212 | 3.8006 | 14400 | 0.0619 | 12874656 |
0.0331 | 3.8534 | 14600 | 0.0619 | 13053184 |
0.0227 | 3.9062 | 14800 | 0.0619 | 13232576 |
0.0309 | 3.9590 | 15000 | 0.0620 | 13410176 |
0.0569 | 4.0116 | 15200 | 0.0624 | 13588176 |
0.0439 | 4.0644 | 15400 | 0.0615 | 13766160 |
0.0455 | 4.1172 | 15600 | 0.0628 | 13945776 |
0.0598 | 4.1700 | 15800 | 0.0625 | 14123120 |
0.0311 | 4.2228 | 16000 | 0.0621 | 14300816 |
0.0436 | 4.2756 | 16200 | 0.0626 | 14479248 |
0.0221 | 4.3284 | 16400 | 0.0618 | 14660976 |
0.0472 | 4.3812 | 16600 | 0.0614 | 14839056 |
0.0608 | 4.4339 | 16800 | 0.0628 | 15016048 |
0.0142 | 4.4867 | 17000 | 0.0643 | 15196432 |
0.021 | 4.5395 | 17200 | 0.0628 | 15374128 |
0.0775 | 4.5923 | 17400 | 0.0619 | 15553776 |
0.0554 | 4.6451 | 17600 | 0.0627 | 15733520 |
0.0908 | 4.6979 | 17800 | 0.0618 | 15911728 |
0.0275 | 4.7507 | 18000 | 0.0629 | 16091728 |
0.0601 | 4.8035 | 18200 | 0.0619 | 16268208 |
0.0926 | 4.8563 | 18400 | 0.0613 | 16446704 |
0.0452 | 4.9091 | 18600 | 0.0625 | 16627152 |
0.0507 | 4.9619 | 18800 | 0.0623 | 16806032 |
0.0439 | 5.0145 | 19000 | 0.0619 | 16986160 |
0.0301 | 5.0673 | 19200 | 0.0629 | 17164848 |
0.0263 | 5.1201 | 19400 | 0.0624 | 17342800 |
0.0691 | 5.1729 | 19600 | 0.0619 | 17520144 |
0.0683 | 5.2257 | 19800 | 0.0619 | 17697936 |
0.0435 | 5.2785 | 20000 | 0.0628 | 17876496 |
0.0127 | 5.3313 | 20200 | 0.0634 | 18054800 |
0.0486 | 5.3841 | 20400 | 0.0622 | 18232176 |
0.024 | 5.4368 | 20600 | 0.0625 | 18411760 |
0.0372 | 5.4896 | 20800 | 0.0622 | 18590672 |
0.0228 | 5.5424 | 21000 | 0.0634 | 18770000 |
0.0268 | 5.5952 | 21200 | 0.0625 | 18947664 |
0.0281 | 5.6480 | 21400 | 0.0636 | 19127344 |
0.0189 | 5.7008 | 21600 | 0.0620 | 19306864 |
0.0744 | 5.7536 | 21800 | 0.0628 | 19485200 |
0.0487 | 5.8064 | 22000 | 0.0625 | 19664112 |
0.0766 | 5.8592 | 22200 | 0.0625 | 19843216 |
0.0197 | 5.9120 | 22400 | 0.0619 | 20022672 |
0.0408 | 5.9648 | 22600 | 0.0613 | 20201808 |
0.0351 | 6.0174 | 22800 | 0.0621 | 20380512 |
0.0804 | 6.0702 | 23000 | 0.0636 | 20560608 |
0.0683 | 6.1230 | 23200 | 0.0634 | 20739200 |
0.0608 | 6.1758 | 23400 | 0.0632 | 20917728 |
0.0146 | 6.2286 | 23600 | 0.0629 | 21097088 |
0.0409 | 6.2814 | 23800 | 0.0618 | 21275360 |
0.0583 | 6.3342 | 24000 | 0.0621 | 21454048 |
0.0397 | 6.3870 | 24200 | 0.0614 | 21631232 |
0.0789 | 6.4398 | 24400 | 0.0619 | 21809632 |
0.0344 | 6.4925 | 24600 | 0.0616 | 21988192 |
0.0641 | 6.5453 | 24800 | 0.0624 | 22168864 |
0.0701 | 6.5981 | 25000 | 0.0627 | 22347392 |
0.032 | 6.6509 | 25200 | 0.0627 | 22526048 |
0.086 | 6.7037 | 25400 | 0.0627 | 22704800 |
0.0612 | 6.7565 | 25600 | 0.0624 | 22883200 |
0.0317 | 6.8093 | 25800 | 0.0631 | 23063104 |
0.0592 | 6.8621 | 26000 | 0.0623 | 23242080 |
0.0119 | 6.9149 | 26200 | 0.0626 | 23421312 |
0.0425 | 6.9677 | 26400 | 0.0627 | 23599008 |
0.0758 | 7.0203 | 26600 | 0.0625 | 23777520 |
0.0404 | 7.0731 | 26800 | 0.0620 | 23954320 |
0.0253 | 7.1259 | 27000 | 0.0616 | 24134608 |
0.048 | 7.1787 | 27200 | 0.0623 | 24312464 |
0.0363 | 7.2315 | 27400 | 0.0626 | 24491696 |
0.0313 | 7.2843 | 27600 | 0.0623 | 24670160 |
0.0235 | 7.3371 | 27800 | 0.0626 | 24848976 |
0.0085 | 7.3899 | 28000 | 0.0625 | 25027536 |
0.0206 | 7.4427 | 28200 | 0.0626 | 25205648 |
0.0438 | 7.4954 | 28400 | 0.0638 | 25384496 |
0.0745 | 7.5482 | 28600 | 0.0645 | 25563856 |
0.0266 | 7.6010 | 28800 | 0.0629 | 25743536 |
0.02 | 7.6538 | 29000 | 0.0630 | 25921616 |
0.0755 | 7.7066 | 29200 | 0.0620 | 26103376 |
0.0071 | 7.7594 | 29400 | 0.0625 | 26283664 |
0.0383 | 7.8122 | 29600 | 0.0622 | 26463440 |
0.0409 | 7.8650 | 29800 | 0.0634 | 26642352 |
0.0113 | 7.9178 | 30000 | 0.0635 | 26822096 |
0.042 | 7.9706 | 30200 | 0.0641 | 27000688 |
0.032 | 8.0232 | 30400 | 0.0633 | 27178304 |
0.0215 | 8.0760 | 30600 | 0.0630 | 27356864 |
0.0241 | 8.1288 | 30800 | 0.0627 | 27536640 |
0.034 | 8.1816 | 31000 | 0.0629 | 27714496 |
0.0317 | 8.2344 | 31200 | 0.0632 | 27893536 |
0.0711 | 8.2872 | 31400 | 0.0629 | 28071808 |
0.0658 | 8.3400 | 31600 | 0.0624 | 28250112 |
0.0212 | 8.3928 | 31800 | 0.0625 | 28428832 |
0.0212 | 8.4456 | 32000 | 0.0628 | 28607296 |
0.0331 | 8.4984 | 32200 | 0.0622 | 28787040 |
0.0249 | 8.5511 | 32400 | 0.0623 | 28966560 |
0.0328 | 8.6039 | 32600 | 0.0629 | 29144544 |
0.1233 | 8.6567 | 32800 | 0.0627 | 29323040 |
0.0444 | 8.7095 | 33000 | 0.0627 | 29502176 |
0.0091 | 8.7623 | 33200 | 0.0627 | 29682560 |
0.0042 | 8.8151 | 33400 | 0.0631 | 29860768 |
0.0568 | 8.8679 | 33600 | 0.0632 | 30038624 |
0.0251 | 8.9207 | 33800 | 0.0632 | 30216384 |
0.0349 | 8.9735 | 34000 | 0.0632 | 30395872 |
0.0202 | 9.0261 | 34200 | 0.0634 | 30573920 |
0.0469 | 9.0789 | 34400 | 0.0633 | 30753536 |
0.0714 | 9.1317 | 34600 | 0.0633 | 30931776 |
0.0271 | 9.1845 | 34800 | 0.0631 | 31110592 |
0.1088 | 9.2373 | 35000 | 0.0632 | 31288160 |
0.0193 | 9.2901 | 35200 | 0.0629 | 31465760 |
0.0059 | 9.3429 | 35400 | 0.0632 | 31643168 |
0.0442 | 9.3957 | 35600 | 0.0630 | 31821856 |
0.0485 | 9.4485 | 35800 | 0.0629 | 31998368 |
0.0366 | 9.5013 | 36000 | 0.0633 | 32178176 |
0.0406 | 9.5540 | 36200 | 0.0630 | 32356768 |
0.1017 | 9.6068 | 36400 | 0.0629 | 32537792 |
0.008 | 9.6596 | 36600 | 0.0627 | 32714880 |
0.0413 | 9.7124 | 36800 | 0.0628 | 32893312 |
0.0096 | 9.7652 | 37000 | 0.0630 | 33071840 |
0.0542 | 9.8180 | 37200 | 0.0630 | 33251936 |
0.0094 | 9.8708 | 37400 | 0.0630 | 33431008 |
0.0232 | 9.9236 | 37600 | 0.0630 | 33610816 |
0.0451 | 9.9764 | 37800 | 0.0630 | 33790528 |
0.0678 | 10.0290 | 38000 | 0.0632 | 33967520 |
0.0554 | 10.0818 | 38200 | 0.0630 | 34145280 |
0.0812 | 10.1346 | 38400 | 0.0629 | 34324448 |
0.0064 | 10.1874 | 38600 | 0.0629 | 34503808 |
0.0356 | 10.2402 | 38800 | 0.0631 | 34683552 |
0.0308 | 10.2930 | 39000 | 0.0630 | 34860896 |
0.0346 | 10.3458 | 39200 | 0.0629 | 35039424 |
0.0218 | 10.3986 | 39400 | 0.0629 | 35217792 |
0.0105 | 10.4514 | 39600 | 0.0630 | 35396000 |
0.0536 | 10.5042 | 39800 | 0.0631 | 35575872 |
0.0618 | 10.5569 | 40000 | 0.0629 | 35754976 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_sst2_1744902624
Base model
meta-llama/Meta-Llama-3-8B-Instruct