train_sst2_1753094144
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0639
- Num Input Tokens Seen: 33869824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.0693 | 0.5 | 7577 | 0.1049 | 1694048 |
0.0521 | 1.0 | 15154 | 0.0835 | 3385616 |
0.1755 | 1.5 | 22731 | 0.0754 | 5082864 |
0.1278 | 2.0 | 30308 | 0.0707 | 6774096 |
0.015 | 2.5 | 37885 | 0.0695 | 8467152 |
0.0088 | 3.0 | 45462 | 0.0670 | 10161824 |
0.0201 | 3.5 | 53039 | 0.0681 | 11856000 |
0.1397 | 4.0 | 60616 | 0.0659 | 13549104 |
0.044 | 4.5 | 68193 | 0.0653 | 15241168 |
0.0067 | 5.0 | 75770 | 0.0651 | 16935568 |
0.1097 | 5.5 | 83347 | 0.0642 | 18626160 |
0.053 | 6.0 | 90924 | 0.0644 | 20320896 |
0.0618 | 6.5 | 98501 | 0.0647 | 22013696 |
0.0859 | 7.0 | 106078 | 0.0644 | 23709008 |
0.1184 | 7.5 | 113655 | 0.0653 | 25400400 |
0.0073 | 8.0 | 121232 | 0.0646 | 27099520 |
0.0052 | 8.5 | 128809 | 0.0639 | 28792480 |
0.0593 | 9.0 | 136386 | 0.0643 | 30484864 |
0.0249 | 9.5 | 143963 | 0.0641 | 32173664 |
0.023 | 10.0 | 151540 | 0.0642 | 33869824 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_sst2_1753094144
Base model
meta-llama/Meta-Llama-3-8B-Instruct