train_wsc_1753094172
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the wsc dataset. It achieves the following results on the evaluation set:
- Loss: 0.3492
- Num Input Tokens Seen: 490000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.641 | 0.504 | 63 | 0.3761 | 25504 |
0.4644 | 1.008 | 126 | 0.3736 | 49696 |
0.3412 | 1.512 | 189 | 0.3713 | 74112 |
0.3277 | 2.016 | 252 | 0.3704 | 99136 |
0.3512 | 2.52 | 315 | 0.3547 | 123904 |
0.3697 | 3.024 | 378 | 0.3534 | 148736 |
0.3454 | 3.528 | 441 | 0.3492 | 174432 |
0.3245 | 4.032 | 504 | 0.3608 | 198656 |
0.3436 | 4.536 | 567 | 0.3527 | 224032 |
0.3465 | 5.04 | 630 | 0.3518 | 247424 |
0.3448 | 5.5440 | 693 | 0.3496 | 271232 |
0.3572 | 6.048 | 756 | 0.3529 | 295728 |
0.3491 | 6.552 | 819 | 0.3544 | 320464 |
0.3192 | 7.056 | 882 | 0.3651 | 345856 |
0.3254 | 7.5600 | 945 | 0.3687 | 371040 |
0.3465 | 8.064 | 1008 | 0.3556 | 395216 |
0.3424 | 8.568 | 1071 | 0.3567 | 419184 |
0.3577 | 9.072 | 1134 | 0.3560 | 444560 |
0.3418 | 9.576 | 1197 | 0.3568 | 469104 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_wsc_1753094172
Base model
meta-llama/Meta-Llama-3-8B-Instruct