financial-rag-matryoshka
Model finetuned for financial use-cases from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model strives to excel tremendously in Financial Document Retrieval Tasks, concurrently preserving a maximum level of generalized performance.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-large-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
# Run inference
sentences = [
'JP Morgan reported total deposits of $2.6 trillion in the year ending December 31, 2023.',
"What were JP Morgan's total deposits in 2023?",
'What is the primary source of revenue for the software company, Microsoft?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_1024
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.88 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9956 |
cosine_precision@1 | 0.88 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0996 |
cosine_recall@1 | 0.88 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9956 |
cosine_ndcg@10 | 0.9427 |
cosine_mrr@10 | 0.9252 |
cosine_map@100 | 0.9254 |
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.88 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.88 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.88 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9408 |
cosine_mrr@10 | 0.924 |
cosine_map@100 | 0.9245 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8711 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8711 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8711 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9381 |
cosine_mrr@10 | 0.9203 |
cosine_map@100 | 0.9207 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8756 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8756 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8756 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9396 |
cosine_mrr@10 | 0.9223 |
cosine_map@100 | 0.9228 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8667 |
cosine_accuracy@3 | 0.9556 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8667 |
cosine_precision@3 | 0.3185 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8667 |
cosine_recall@3 | 0.9556 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9346 |
cosine_mrr@10 | 0.9157 |
cosine_map@100 | 0.916 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8311 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9733 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8311 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1947 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8311 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9733 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9208 |
cosine_mrr@10 | 0.8972 |
cosine_map@100 | 0.8975 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,275 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 15 tokens
- mean: 44.74 tokens
- max: 114 tokens
- min: 9 tokens
- mean: 18.12 tokens
- max: 32 tokens
- Samples:
positive anchor At the end of fiscal year 2023, Exxon Mobil reported a debt-to-equity ratio of 0.32, implying that the company used more equity than debt in its capital structure.
What was the debt-to-equity ratio for Exxon Mobil at the end of fiscal year 2023?
Amazon Web Services (AWS) generated $12.7 billion in net sales in the fourth quarter of 2020, up 28% from the same period of the previous year. It accounted for about 10% of Amazon’s total net sales for the quarter.
How did Amazon's AWS segment perform in the fourth quarter of 2020?
JPMorgan Chase generates revenues by providing a wide range of banking and financial services. These include investment banking (M&As, advisory), consumer and community banking (home mortgages, auto loans), commercial banking, and asset and wealth management.
What are the key revenue sources for JPMorgan Chase?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|---|
0.9552 | 8 | - | 0.9090 | 0.8848 | 0.8992 | 0.9052 | 0.8775 | 0.9030 |
1.1940 | 10 | 0.4749 | - | - | - | - | - | - |
1.9104 | 16 | - | 0.9170 | 0.9095 | 0.9109 | 0.9201 | 0.8961 | 0.9212 |
2.3881 | 20 | 0.0862 | - | - | - | - | - | - |
2.9851 | 25 | - | 0.9190 | 0.9071 | 0.9160 | 0.9278 | 0.8998 | 0.9234 |
3.5821 | 30 | 0.0315 | - | - | - | - | - | - |
3.9403 | 33 | - | 0.9183 | 0.9053 | 0.9122 | 0.9287 | 0.8998 | 0.9183 |
4.7761 | 40 | 0.0184 | - | - | - | - | - | - |
4.8955 | 41 | - | 0.9225 | 0.9125 | 0.9164 | 0.9260 | 0.8985 | 0.9220 |
5.9701 | 50 | 0.0135 | 0.9268 | 0.9132 | 0.9208 | 0.9257 | 0.8961 | 0.9271 |
6.9254 | 58 | - | 0.9254 | 0.9158 | 0.9202 | 0.9212 | 0.8938 | 0.9213 |
7.1642 | 60 | 0.0123 | - | - | - | - | - | - |
8.0 | 67 | - | 0.9253 | 0.916 | 0.9228 | 0.9207 | 0.8972 | 0.9243 |
8.3582 | 70 | 0.01 | - | - | - | - | - | - |
8.9552 | 75 | - | 0.9254 | 0.9160 | 0.9213 | 0.9207 | 0.9005 | 0.9245 |
9.5522 | 80 | 0.0088 | 0.9254 | 0.9160 | 0.9228 | 0.9207 | 0.8975 | 0.9245 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for rbhatia46/financial-rag-matryoshka
Base model
Alibaba-NLP/gte-large-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.880
- Cosine Accuracy@3 on dim 1024self-reported0.960
- Cosine Accuracy@5 on dim 1024self-reported0.987
- Cosine Accuracy@10 on dim 1024self-reported0.996
- Cosine Precision@1 on dim 1024self-reported0.880
- Cosine Precision@3 on dim 1024self-reported0.320
- Cosine Precision@5 on dim 1024self-reported0.197
- Cosine Precision@10 on dim 1024self-reported0.100
- Cosine Recall@1 on dim 1024self-reported0.880
- Cosine Recall@3 on dim 1024self-reported0.960