File size: 4,987 Bytes
5e46838
 
 
 
46b0a79
 
 
 
 
 
5e46838
 
 
46b0a79
 
 
bed8b0e
46b0a79
 
 
 
 
bed8b0e
 
b143fe5
848c62f
46b0a79
 
 
 
 
848c62f
46b0a79
5e46838
46b0a79
5e46838
46b0a79
 
848c62f
46b0a79
 
848c62f
46b0a79
 
848c62f
46b0a79
 
 
 
 
 
 
 
 
 
848c62f
46b0a79
848c62f
46b0a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848c62f
46b0a79
848c62f
46b0a79
 
5e46838
46b0a79
 
5e46838
46b0a79
 
5e46838
46b0a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e46838
46b0a79
848c62f
46b0a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed8b0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
library_name: transformers
tags:
- generated_from_trainer
- text-generation
- transformers
- meta-math
- qwen2
- symbolic-ai
- symbioticlm
model-index:
- name: SymLM
  results: []
license: afl-3.0
datasets:
- meta-math/MetaMathQA
- open-thoughts/OpenThoughts2-1M
language:
- en
base_model:
- Qwen/Qwen2.5-0.5B
pipeline_tag: text-generation
metrics:
- accuracy
---

# ๐Ÿง  SymLM

**SymbioticLM** is a hybrid symbolicโ€“neural language model that integrates a frozen transformer backbone (`Qwen2ForCausalLM`) with a suite of symbolic cognitive modules for adaptive, interpretable reasoning.

---

## ๐Ÿ“ Model Description

The architecture fuses neural token-level generation with symbolic introspection and reasoning:

- **Dynamic Thought Evolution with Helical Encoding and DNA-Inspired Memory (DTE-HDM)**  
  Enables structured long-term memory and spiral-context encoding across tokens.

- **Multi-Agent Symbiotic Response Mechanisms (M.A.S.R.M)**  
  Coordinates symbolic-neural agents via gated attention and adaptive response layers.

- **QwenExoCortex**  
  Projects contextual hidden states from the Qwen model into a symbolic fusion space for reasoning and memory replay.

- **Symbolic processors**  
  Includes:
  - `ThoughtDynamicsLNN`
  - `Liquid / Crystalline Processors`
  - `Graph Reasoning with DNAConv`
  - A rolling `ThoughtMemory`

This enables real-time fusion of symbolic thinking, token generation, and reasoning-aware language modeling.

---

## ๐ŸŽฏ Intended Uses & Limitations

### โœ… Intended Uses

- **Mathematical reasoning and proof generation**  
  Fine-tuned on *MetaMathQA*, optimized for symbolic Q&A, equation logic, and structured inference.

- **Symbolic-cognitive AI research**  
  Useful for studying attention modulation, memory replay, and neural-symbolic interface dynamics.

- **Low-resource adaptation**  
  Modular memory and projection design enables meaningful performance even with smaller datasets.

- **Building adaptive cognition systems**  
  Can serve as a symbolic kernel for reflective AI agents and knowledge evolution pipelines.

---

### โš ๏ธ Limitations

- **Limited training scale**  
  Trained on 25,000 MetaMathQA examples. Effective for symbolic form, but not yet broad generalization.

- **No RLHF or alignment**  
  Outputs are not tuned for safety or instruction alignment and may hallucinate.

- **Fluency โ‰  correctness**  
  Symbolic fluency does not imply mathematically valid proofs. Verification is recommended.

- **Not optimized for open-domain generation**  
  This model prioritizes logic and structure over conversational depth.

---

## โš™๏ธ Training Procedure

This checkpoint is currently in experimental phase.

### ๐Ÿงช Training Hyperparameters

- **learning_rate**: `3e-5`  
- **train_batch_size**: `16`  
- **eval_batch_size**: `16`  
- **gradient_accumulation_steps**: `64`  
- **total_train_batch_size**: `1024`  
- **optimizer**: `AdamW`, betas=(0.9, 0.999), epsilon=1e-08  
- **lr_scheduler_type**: `cosine`  
- **warmup_steps**: `500`  
- **num_epochs**: `3`  
- **mixed_precision_training**: `Native AMP`

---

## ๐Ÿงฑ Framework Versions

- ๐Ÿค— Transformers: `4.51.3`  
- ๐Ÿง  PyTorch: `2.7.0+cu126`  
- ๐Ÿ“š Datasets: `3.5.0`  
- ๐Ÿ”ค Tokenizers: `0.21.1`

---

## ๐Ÿ“š Research Foundations

SymbioticLM builds upon a cohesive theoretical framework for dynamic reasoning and neuro-symbolic learning:

### ๐Ÿ” Multi-Agent Symbiosis and Dynamic Thought

**Rapid Adaptation via Multi-Agent Symbiotic Response Mechanisms (M.A.S.R.M)**  
> A framework where symbolic and neural agents dynamically adapt via gated feedback, memory modulation, and agent-based specialization.

**Focus**: Multi-agent control, reflective learning, contextual responsiveness

---

### ๐Ÿงฌ Dynamic Thought Evolution with Helical Encoding and DNA-Inspired Memory (DTE-HDM)

> A memory structure inspired by biological helices, enabling thought persistence through spiral-layered contextual encodings across time.

**Focus**: Long-term token evolution, normalized replay, thought continuity

---

### ๐Ÿง  Integrating DTE-HDM + M.A.S.R.M for Adaptive AI

> Combines symbolic evolution and multi-agent adaptation to construct an LLM that reflects, adapts, and deepens reasoning through internal dynamics.

**Result**: A system that *learns faster*, *adapts deeper*, and *thinks symbolically*

---

### ๐Ÿ“ Theoretical Underpinning

**The Analytic Foundations Theorem (AFT)**  
> A rigorous, measure-theoretic replacement for classical calculus: replaces pointwise derivatives with discrepancy-driven integral convergence across vanishing sets.

**Applies to**:  
- Symbolic gradients  
- Gradient-free optimization  
- Discrete logic approximation in function spaces

---

These form the **mathematical and architectural core** of SymbioticLM, enabling:

- ๐Ÿง  *Neuro-symbolic cognitive evolution*  
- ๐Ÿ” *Multi-agent dynamic feedback coordination*  
- ๐Ÿ“ *Formal memory through discrepancy-based logic*

---