File size: 4,987 Bytes
5e46838 46b0a79 5e46838 46b0a79 bed8b0e 46b0a79 bed8b0e b143fe5 848c62f 46b0a79 848c62f 46b0a79 5e46838 46b0a79 5e46838 46b0a79 848c62f 46b0a79 848c62f 46b0a79 848c62f 46b0a79 848c62f 46b0a79 848c62f 46b0a79 848c62f 46b0a79 848c62f 46b0a79 5e46838 46b0a79 5e46838 46b0a79 5e46838 46b0a79 5e46838 46b0a79 848c62f 46b0a79 bed8b0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
library_name: transformers
tags:
- generated_from_trainer
- text-generation
- transformers
- meta-math
- qwen2
- symbolic-ai
- symbioticlm
model-index:
- name: SymLM
results: []
license: afl-3.0
datasets:
- meta-math/MetaMathQA
- open-thoughts/OpenThoughts2-1M
language:
- en
base_model:
- Qwen/Qwen2.5-0.5B
pipeline_tag: text-generation
metrics:
- accuracy
---
# ๐ง SymLM
**SymbioticLM** is a hybrid symbolicโneural language model that integrates a frozen transformer backbone (`Qwen2ForCausalLM`) with a suite of symbolic cognitive modules for adaptive, interpretable reasoning.
---
## ๐ Model Description
The architecture fuses neural token-level generation with symbolic introspection and reasoning:
- **Dynamic Thought Evolution with Helical Encoding and DNA-Inspired Memory (DTE-HDM)**
Enables structured long-term memory and spiral-context encoding across tokens.
- **Multi-Agent Symbiotic Response Mechanisms (M.A.S.R.M)**
Coordinates symbolic-neural agents via gated attention and adaptive response layers.
- **QwenExoCortex**
Projects contextual hidden states from the Qwen model into a symbolic fusion space for reasoning and memory replay.
- **Symbolic processors**
Includes:
- `ThoughtDynamicsLNN`
- `Liquid / Crystalline Processors`
- `Graph Reasoning with DNAConv`
- A rolling `ThoughtMemory`
This enables real-time fusion of symbolic thinking, token generation, and reasoning-aware language modeling.
---
## ๐ฏ Intended Uses & Limitations
### โ
Intended Uses
- **Mathematical reasoning and proof generation**
Fine-tuned on *MetaMathQA*, optimized for symbolic Q&A, equation logic, and structured inference.
- **Symbolic-cognitive AI research**
Useful for studying attention modulation, memory replay, and neural-symbolic interface dynamics.
- **Low-resource adaptation**
Modular memory and projection design enables meaningful performance even with smaller datasets.
- **Building adaptive cognition systems**
Can serve as a symbolic kernel for reflective AI agents and knowledge evolution pipelines.
---
### โ ๏ธ Limitations
- **Limited training scale**
Trained on 25,000 MetaMathQA examples. Effective for symbolic form, but not yet broad generalization.
- **No RLHF or alignment**
Outputs are not tuned for safety or instruction alignment and may hallucinate.
- **Fluency โ correctness**
Symbolic fluency does not imply mathematically valid proofs. Verification is recommended.
- **Not optimized for open-domain generation**
This model prioritizes logic and structure over conversational depth.
---
## โ๏ธ Training Procedure
This checkpoint is currently in experimental phase.
### ๐งช Training Hyperparameters
- **learning_rate**: `3e-5`
- **train_batch_size**: `16`
- **eval_batch_size**: `16`
- **gradient_accumulation_steps**: `64`
- **total_train_batch_size**: `1024`
- **optimizer**: `AdamW`, betas=(0.9, 0.999), epsilon=1e-08
- **lr_scheduler_type**: `cosine`
- **warmup_steps**: `500`
- **num_epochs**: `3`
- **mixed_precision_training**: `Native AMP`
---
## ๐งฑ Framework Versions
- ๐ค Transformers: `4.51.3`
- ๐ง PyTorch: `2.7.0+cu126`
- ๐ Datasets: `3.5.0`
- ๐ค Tokenizers: `0.21.1`
---
## ๐ Research Foundations
SymbioticLM builds upon a cohesive theoretical framework for dynamic reasoning and neuro-symbolic learning:
### ๐ Multi-Agent Symbiosis and Dynamic Thought
**Rapid Adaptation via Multi-Agent Symbiotic Response Mechanisms (M.A.S.R.M)**
> A framework where symbolic and neural agents dynamically adapt via gated feedback, memory modulation, and agent-based specialization.
**Focus**: Multi-agent control, reflective learning, contextual responsiveness
---
### ๐งฌ Dynamic Thought Evolution with Helical Encoding and DNA-Inspired Memory (DTE-HDM)
> A memory structure inspired by biological helices, enabling thought persistence through spiral-layered contextual encodings across time.
**Focus**: Long-term token evolution, normalized replay, thought continuity
---
### ๐ง Integrating DTE-HDM + M.A.S.R.M for Adaptive AI
> Combines symbolic evolution and multi-agent adaptation to construct an LLM that reflects, adapts, and deepens reasoning through internal dynamics.
**Result**: A system that *learns faster*, *adapts deeper*, and *thinks symbolically*
---
### ๐ Theoretical Underpinning
**The Analytic Foundations Theorem (AFT)**
> A rigorous, measure-theoretic replacement for classical calculus: replaces pointwise derivatives with discrepancy-driven integral convergence across vanishing sets.
**Applies to**:
- Symbolic gradients
- Gradient-free optimization
- Discrete logic approximation in function spaces
---
These form the **mathematical and architectural core** of SymbioticLM, enabling:
- ๐ง *Neuro-symbolic cognitive evolution*
- ๐ *Multi-agent dynamic feedback coordination*
- ๐ *Formal memory through discrepancy-based logic*
--- |