reiffd's picture
End of training
afe133d verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
  - f1
model-index:
  - name: bert-base-phia-secondhandDescription-1000
    results: []

bert-base-phia-secondhandDescription-1000

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9318
  • Precision: 0.8414
  • Recall: 0.8311
  • Accuracy: 0.8311
  • F1: 0.8306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
No log 1.0 84 1.4608 0.7781 0.6824 0.6824 0.6766
No log 2.0 168 0.7149 0.8298 0.8176 0.8176 0.8185
1.4174 3.0 252 0.6704 0.8229 0.8041 0.8041 0.8036
1.4174 4.0 336 0.8298 0.8359 0.7973 0.7973 0.7974
0.2952 5.0 420 0.7800 0.8525 0.8311 0.8311 0.8305
0.2952 6.0 504 0.8365 0.8464 0.8311 0.8311 0.8312
0.2952 7.0 588 0.9032 0.8309 0.8176 0.8176 0.8184
0.0537 8.0 672 0.8952 0.8337 0.8243 0.8243 0.8237
0.0537 9.0 756 0.9206 0.8414 0.8311 0.8311 0.8306
0.0243 10.0 840 0.9318 0.8414 0.8311 0.8311 0.8306

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1