retrain-pipelines Function Caller
version 0.48
- 2025-03-23 10:45:39 UTC
(retraining
source-code |
pipeline-card)
Training dataset :
retrain-pipelines/func_calls v0.5
(1dea612 - 2025-03-23 10:30:06 UTC)
Base model :
unsloth/Qwen2.5-1.5B
(2d0a015 - 2025-02-06 02:32:14 UTC)
arxiv :
-2407.10671
The herein LoRa adapter can for instance be used as follows :
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import device, cuda
repo_id = "retrain-pipelines/function_caller"
revision = "<model_revision_commit_hash>"
model = AutoModelForCausalLM.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
device = device("cuda" if cuda.is_available() else "cpu")
def generate_tool_calls_list(query, max_new_tokens=400) -> str:
formatted_query = tokenizer.chat_template.format(query, "")
inputs = tokenizer(formatted_query, return_tensors="pt").input_ids.to(device)
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return generated_text[len(formatted_query):].strip()
generate_tool_calls_list("Is 49 a perfect square ?")
Powered by
retrain-pipelines
0.1.1
-
Run by Aurelien-Morgan-Bot
-
UnslothFuncCallFlow - mf_run_id : 1806
Model tree for retrain-pipelines/function_caller
Dataset used to train retrain-pipelines/function_caller
Evaluation results
- precision on retrain-pipelines Function Callingvalidation set self-reported0.063
- recall on retrain-pipelines Function Callingvalidation set self-reported0.063
- f1 on retrain-pipelines Function Callingvalidation set self-reported0.063
- jaccard on retrain-pipelines Function Callingvalidation set self-reported0.063