|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- portugues |
|
- portuguese |
|
- QA |
|
- instruct |
|
- phi |
|
base_model: meta-llama/Llama-2-13b |
|
datasets: |
|
- rhaymison/superset |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: portuguese-tom-cat-13b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 42.76 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 45.62 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 39.09 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 77.41 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: pearson |
|
value: 58.44 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 68.14 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 84.13 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 56.27 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia/tweetsentbr_fewshot |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 48.86 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-tom-cat-13b |
|
name: Open Portuguese LLM Leaderboard |
|
--- |
|
|
|
# portuguese-tom-cat-13b |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/13b.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
|
|
This model was trained with a superset of 300,000 instructions in Portuguese. |
|
The model comes to help fill the gap in models in Portuguese. Tuned from the Llama-2-13b |
|
|
|
# How to use |
|
|
|
### FULL MODEL : A100 |
|
### HALF MODEL: L4 |
|
### 8bit or 4bit : T4 or V100 |
|
|
|
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. |
|
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. |
|
Important points like these help models to perform much better. |
|
|
|
```python |
|
!pip install -q -U transformers |
|
!pip install -q -U accelerate |
|
!pip install -q -U bitsandbytes |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
model = AutoModelForCausalLM.from_pretrained("rhaymison/portuguese-tom-cat-13b", device_map= {"": 0}) |
|
tokenizer = AutoTokenizer.from_pretrained("rhaymison/portuguese-tom-cat-13b") |
|
model.eval() |
|
|
|
``` |
|
|
|
You can use with Pipeline. |
|
```python |
|
|
|
from transformers import pipeline |
|
pipe = pipeline("text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
do_sample=True, |
|
max_new_tokens=512, |
|
num_beams=2, |
|
temperature=0.3, |
|
top_k=50, |
|
top_p=0.95, |
|
early_stopping=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
def format_question(input:str)-> str: |
|
base_instruction = """Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.""" |
|
_input = f"""<s>[INST] <<SYS>>\n {base_instruction} |
|
<</SYS>> {input} [/INST] |
|
""" |
|
|
|
return _input.strip() |
|
|
|
prompt = "Me explique sobre os romanos" |
|
pipe(format_question(prompt)) |
|
``` |
|
|
|
```text |
|
Os romanos foram um povo que viveu na Itália antiga, entre o século VIII a.C. e o século V d.C. |
|
Eles eram conhecidos por sua habilidade em construir estradas, edifícios e aquedutos, e também por suas conquistas militares. |
|
O Império Romano, que durou de 27 a.C. a 476 d.C., foi o maior império da história, abrangendo uma área que ia da Grécia até a Inglaterra. |
|
Os romanos também desenvolveram um sistema de leis e instituições políticas que influenciaram profundamente a cultura ocidental. |
|
``` |
|
|
|
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. |
|
For the complete model in colab you will need the A100. |
|
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. |
|
|
|
# 4bits example |
|
|
|
```python |
|
from transformers import BitsAndBytesConfig |
|
import torch |
|
nb_4bit_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
quantization_config=bnb_config, |
|
device_map={"": 0} |
|
) |
|
|
|
``` |
|
|
|
# Open Portuguese LLM Leaderboard Evaluation Results |
|
|
|
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/portuguese-tom-cat-13b) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) |
|
|
|
| Metric | Value | |
|
|--------------------------|---------| |
|
|Average |**57.86**| |
|
|ENEM Challenge (No Images)| 42.76| |
|
|BLUEX (No Images) | 45.62| |
|
|OAB Exams | 39.09| |
|
|Assin2 RTE | 77.41| |
|
|Assin2 STS | 58.44| |
|
|FaQuAD NLI | 68.14| |
|
|HateBR Binary | 84.13| |
|
|PT Hate Speech Binary | 56.27| |
|
|tweetSentBR | 48.86| |
|
|
|
|
|
### Comments |
|
|
|
Any idea, help or report will always be welcome. |
|
|
|
email: [email protected] |
|
|
|
<div style="display:flex; flex-direction:row; justify-content:left"> |
|
<a href="https://www.linkedin.com/in/rhaymison-cristian-betini-2b3016175/" target="_blank"> |
|
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> |
|
</a> |
|
<a href="https://github.com/rhaymisonbetini" target="_blank"> |
|
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> |
|
</a> |
|
|