id_ravdess_mel_spec_Vit_vit-tiny-patch16-224_1
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8036
- Accuracy: 0.7917
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 8 | 3.5290 | 0.0231 |
3.7813 | 2.0 | 16 | 3.1577 | 0.0880 |
3.1834 | 3.0 | 24 | 2.9675 | 0.1435 |
2.8849 | 4.0 | 32 | 2.6636 | 0.2037 |
2.3044 | 5.0 | 40 | 2.2016 | 0.3565 |
2.3044 | 6.0 | 48 | 1.8205 | 0.4444 |
1.5789 | 7.0 | 56 | 1.5203 | 0.5417 |
1.0355 | 8.0 | 64 | 1.3309 | 0.6481 |
0.5941 | 9.0 | 72 | 1.2203 | 0.6528 |
0.3301 | 10.0 | 80 | 1.1015 | 0.6806 |
0.3301 | 11.0 | 88 | 1.0155 | 0.7176 |
0.1632 | 12.0 | 96 | 0.9678 | 0.7454 |
0.0791 | 13.0 | 104 | 0.9265 | 0.7454 |
0.0347 | 14.0 | 112 | 0.8884 | 0.75 |
0.0165 | 15.0 | 120 | 0.8745 | 0.7454 |
0.0165 | 16.0 | 128 | 0.8517 | 0.7824 |
0.007 | 17.0 | 136 | 0.8396 | 0.7593 |
0.0033 | 18.0 | 144 | 0.8265 | 0.7917 |
0.0019 | 19.0 | 152 | 0.8109 | 0.7685 |
0.0013 | 20.0 | 160 | 0.8015 | 0.7917 |
0.0013 | 21.0 | 168 | 0.8209 | 0.7917 |
0.001 | 22.0 | 176 | 0.7898 | 0.7917 |
0.0008 | 23.0 | 184 | 0.8016 | 0.7824 |
0.0007 | 24.0 | 192 | 0.8024 | 0.7824 |
0.0006 | 25.0 | 200 | 0.8014 | 0.7917 |
0.0006 | 26.0 | 208 | 0.7987 | 0.7824 |
0.0006 | 27.0 | 216 | 0.8025 | 0.7870 |
0.0006 | 28.0 | 224 | 0.8009 | 0.7824 |
0.0005 | 29.0 | 232 | 0.8001 | 0.7824 |
0.0005 | 30.0 | 240 | 0.8014 | 0.7870 |
0.0005 | 31.0 | 248 | 0.8025 | 0.7824 |
0.0005 | 32.0 | 256 | 0.8013 | 0.7824 |
0.0004 | 33.0 | 264 | 0.8026 | 0.7824 |
0.0004 | 34.0 | 272 | 0.8004 | 0.7824 |
0.0004 | 35.0 | 280 | 0.8027 | 0.7870 |
0.0004 | 36.0 | 288 | 0.8011 | 0.7824 |
0.0004 | 37.0 | 296 | 0.8036 | 0.7917 |
0.0004 | 38.0 | 304 | 0.8027 | 0.7824 |
0.0004 | 39.0 | 312 | 0.8028 | 0.7870 |
0.0004 | 40.0 | 320 | 0.8031 | 0.7824 |
0.0004 | 41.0 | 328 | 0.8037 | 0.7824 |
0.0004 | 42.0 | 336 | 0.8028 | 0.7870 |
0.0003 | 43.0 | 344 | 0.8027 | 0.7870 |
0.0003 | 44.0 | 352 | 0.8028 | 0.7824 |
0.0003 | 45.0 | 360 | 0.8034 | 0.7870 |
0.0003 | 46.0 | 368 | 0.8032 | 0.7870 |
0.0003 | 47.0 | 376 | 0.8031 | 0.7917 |
0.0003 | 48.0 | 384 | 0.8034 | 0.7870 |
0.0003 | 49.0 | 392 | 0.8037 | 0.7917 |
0.0003 | 50.0 | 400 | 0.8036 | 0.7917 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ricardoSLabs/id_ravdess_mel_spec_Vit_vit-tiny-patch16-224_1
Base model
WinKawaks/vit-tiny-patch16-224