id_ravdess_mel_spec_Vit_vit-tiny-patch16-224_1

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8036
  • Accuracy: 0.7917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 3.5290 0.0231
3.7813 2.0 16 3.1577 0.0880
3.1834 3.0 24 2.9675 0.1435
2.8849 4.0 32 2.6636 0.2037
2.3044 5.0 40 2.2016 0.3565
2.3044 6.0 48 1.8205 0.4444
1.5789 7.0 56 1.5203 0.5417
1.0355 8.0 64 1.3309 0.6481
0.5941 9.0 72 1.2203 0.6528
0.3301 10.0 80 1.1015 0.6806
0.3301 11.0 88 1.0155 0.7176
0.1632 12.0 96 0.9678 0.7454
0.0791 13.0 104 0.9265 0.7454
0.0347 14.0 112 0.8884 0.75
0.0165 15.0 120 0.8745 0.7454
0.0165 16.0 128 0.8517 0.7824
0.007 17.0 136 0.8396 0.7593
0.0033 18.0 144 0.8265 0.7917
0.0019 19.0 152 0.8109 0.7685
0.0013 20.0 160 0.8015 0.7917
0.0013 21.0 168 0.8209 0.7917
0.001 22.0 176 0.7898 0.7917
0.0008 23.0 184 0.8016 0.7824
0.0007 24.0 192 0.8024 0.7824
0.0006 25.0 200 0.8014 0.7917
0.0006 26.0 208 0.7987 0.7824
0.0006 27.0 216 0.8025 0.7870
0.0006 28.0 224 0.8009 0.7824
0.0005 29.0 232 0.8001 0.7824
0.0005 30.0 240 0.8014 0.7870
0.0005 31.0 248 0.8025 0.7824
0.0005 32.0 256 0.8013 0.7824
0.0004 33.0 264 0.8026 0.7824
0.0004 34.0 272 0.8004 0.7824
0.0004 35.0 280 0.8027 0.7870
0.0004 36.0 288 0.8011 0.7824
0.0004 37.0 296 0.8036 0.7917
0.0004 38.0 304 0.8027 0.7824
0.0004 39.0 312 0.8028 0.7870
0.0004 40.0 320 0.8031 0.7824
0.0004 41.0 328 0.8037 0.7824
0.0004 42.0 336 0.8028 0.7870
0.0003 43.0 344 0.8027 0.7870
0.0003 44.0 352 0.8028 0.7824
0.0003 45.0 360 0.8034 0.7870
0.0003 46.0 368 0.8032 0.7870
0.0003 47.0 376 0.8031 0.7917
0.0003 48.0 384 0.8034 0.7870
0.0003 49.0 392 0.8037 0.7917
0.0003 50.0 400 0.8036 0.7917

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/id_ravdess_mel_spec_Vit_vit-tiny-patch16-224_1

Finetuned
(48)
this model

Evaluation results