id_ravdess_mel_spec_Vit_vit-tiny-patch16-224_2
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8514
- Accuracy: 0.7870
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 8 | 3.4190 | 0.0324 |
3.577 | 2.0 | 16 | 3.1245 | 0.0972 |
3.124 | 3.0 | 24 | 2.9168 | 0.1806 |
2.7828 | 4.0 | 32 | 2.5031 | 0.2454 |
2.1565 | 5.0 | 40 | 2.0137 | 0.3796 |
2.1565 | 6.0 | 48 | 1.6643 | 0.5463 |
1.4039 | 7.0 | 56 | 1.4283 | 0.5880 |
0.8467 | 8.0 | 64 | 1.2302 | 0.6620 |
0.471 | 9.0 | 72 | 1.1420 | 0.6574 |
0.245 | 10.0 | 80 | 1.0551 | 0.7130 |
0.245 | 11.0 | 88 | 1.0008 | 0.7361 |
0.1111 | 12.0 | 96 | 0.9660 | 0.75 |
0.0515 | 13.0 | 104 | 0.9158 | 0.7407 |
0.0227 | 14.0 | 112 | 0.9132 | 0.7407 |
0.0106 | 15.0 | 120 | 0.8355 | 0.7685 |
0.0106 | 16.0 | 128 | 0.8486 | 0.7639 |
0.0042 | 17.0 | 136 | 0.8263 | 0.7778 |
0.0021 | 18.0 | 144 | 0.8304 | 0.7731 |
0.0013 | 19.0 | 152 | 0.8260 | 0.7824 |
0.0009 | 20.0 | 160 | 0.8407 | 0.7731 |
0.0009 | 21.0 | 168 | 0.8337 | 0.7824 |
0.0008 | 22.0 | 176 | 0.8311 | 0.7824 |
0.0006 | 23.0 | 184 | 0.8370 | 0.7778 |
0.0006 | 24.0 | 192 | 0.8371 | 0.7778 |
0.0005 | 25.0 | 200 | 0.8373 | 0.7870 |
0.0005 | 26.0 | 208 | 0.8399 | 0.7870 |
0.0005 | 27.0 | 216 | 0.8394 | 0.7870 |
0.0005 | 28.0 | 224 | 0.8412 | 0.7824 |
0.0004 | 29.0 | 232 | 0.8416 | 0.7870 |
0.0004 | 30.0 | 240 | 0.8431 | 0.7870 |
0.0004 | 31.0 | 248 | 0.8450 | 0.7824 |
0.0004 | 32.0 | 256 | 0.8430 | 0.7870 |
0.0004 | 33.0 | 264 | 0.8458 | 0.7824 |
0.0003 | 34.0 | 272 | 0.8466 | 0.7870 |
0.0003 | 35.0 | 280 | 0.8454 | 0.7870 |
0.0003 | 36.0 | 288 | 0.8468 | 0.7824 |
0.0003 | 37.0 | 296 | 0.8484 | 0.7870 |
0.0003 | 38.0 | 304 | 0.8484 | 0.7870 |
0.0003 | 39.0 | 312 | 0.8492 | 0.7824 |
0.0003 | 40.0 | 320 | 0.8498 | 0.7870 |
0.0003 | 41.0 | 328 | 0.8492 | 0.7870 |
0.0003 | 42.0 | 336 | 0.8491 | 0.7870 |
0.0003 | 43.0 | 344 | 0.8505 | 0.7870 |
0.0003 | 44.0 | 352 | 0.8509 | 0.7870 |
0.0003 | 45.0 | 360 | 0.8505 | 0.7870 |
0.0003 | 46.0 | 368 | 0.8509 | 0.7870 |
0.0003 | 47.0 | 376 | 0.8510 | 0.7870 |
0.0003 | 48.0 | 384 | 0.8511 | 0.7870 |
0.0003 | 49.0 | 392 | 0.8514 | 0.7870 |
0.0003 | 50.0 | 400 | 0.8514 | 0.7870 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ricardoSLabs/id_ravdess_mel_spec_Vit_vit-tiny-patch16-224_2
Base model
WinKawaks/vit-tiny-patch16-224