riemanli's picture
lora_gpt2_paper_params
9ec9fb7 verified
|
raw
history blame
2.56 kB
metadata
library_name: peft
license: mit
base_model: gpt2-medium
tags:
  - generated_from_trainer
datasets:
  - e2e_nlg
metrics:
  - bleu
model-index:
  - name: lora-gpt2-e2e-reproduce
    results: []

lora-gpt2-e2e-reproduce

This model is a fine-tuned version of gpt2-medium on the e2e_nlg dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4493
  • Bleu: 0.3781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Bleu
2.9523 0.5706 3000 2.6028 0.3489
2.6924 1.1411 6000 2.5544 0.3501
2.6493 1.7117 9000 2.5217 0.4052
2.6252 2.2822 12000 2.5048 0.3894
2.6023 2.8528 15000 2.4957 0.4060
2.5962 3.4234 18000 2.4863 0.3772
2.5797 3.9939 21000 2.4812 0.3697
2.5691 4.5645 24000 2.4746 0.3864
2.5677 5.1350 27000 2.4708 0.3709
2.553 5.7056 30000 2.4648 0.3787
2.5567 6.2762 33000 2.4610 0.3754
2.5469 6.8467 36000 2.4593 0.3670
2.5422 7.4173 39000 2.4566 0.3663
2.5376 7.9878 42000 2.4548 0.3621
2.534 8.5584 45000 2.4538 0.3812
2.5279 9.1289 48000 2.4532 0.3695
2.5273 9.6995 51000 2.4493 0.3781

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1