flanT5_Task1 / README.md
rishavranaut's picture
End of training
9a5ae73 verified
---
library_name: transformers
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: flanT5_Task1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flanT5_Task1
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6498
- Accuracy: 0.8047
- Precision: 0.8229
- Recall: 0.7765
- F1 score: 0.7990
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 score | Precision | Recall | Validation Loss |
|:-------------:|:------:|:-----:|:--------:|:--------:|:---------:|:------:|:---------------:|
| 1.0024 | 0.4205 | 2500 | 0.76 | 0.7530 | 0.7756 | 0.7318 | 0.8479 |
| 1.0808 | 0.8410 | 5000 | 0.7553 | 0.7620 | 0.7416 | 0.7835 | 0.8954 |
| 1.0927 | 1.2616 | 7500 | 0.7682 | 0.7411 | 0.8393 | 0.6635 | 1.0011 |
| 0.8823 | 1.6821 | 10000 | 0.7847 | 0.7738 | 0.8151 | 0.7365 | 0.8913 |
| 0.8154 | 2.1026 | 12500 | 0.7929 | 0.7822 | 0.8251 | 0.7435 | 0.8291 |
| 0.6981 | 2.5231 | 15000 | 0.9793 | 0.7929 | 0.8152 | 0.7576 | 0.7854 |
| 0.6452 | 2.9437 | 17500 | 0.9164 | 0.8035 | 0.8564 | 0.7294 | 0.7878 |
| 0.4567 | 3.3642 | 20000 | 1.0961 | 0.8153 | 0.8418 | 0.7765 | 0.8078 |
| 0.4245 | 3.7847 | 22500 | 1.2257 | 0.8153 | 0.8268 | 0.7976 | 0.8120 |
| 0.3159 | 4.2052 | 25000 | 1.4984 | 0.8047 | 0.8047 | 0.8047 | 0.8047 |
| 0.2152 | 4.6257 | 27500 | 1.6498 | 0.8047 | 0.8229 | 0.7765 | 0.7990 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0