Paper

Domain Adapted Abstractive Summarization of Dialogue using Transfer Learning

Authors: Rohit Sroch

Abstract

Recently, the abstractive dialogue summarization task has been gaining a lot of attention from researchers. Also, unlike news articles and documents with well-structured text, dialogue differs in the sense that it often comes from two or more interlocutors, exchanging information with each other and having an inherent hierarchical structure based on the sequence of utterances by different speakers. This paper proposes a simple but effective hybrid approach that consists of two modules and uses transfer learning by leveraging pretrained language models (PLMs) to generate an abstractive summary. The first module highlights important utterances, capturing the utterance level relationship by adapting an auto-encoding model like BERT based on the unsupervised or supervised method. And then, the second module generates a concise abstractive summary by adapting encoder-decoder models like T5, BART, and PEGASUS. Experiment results on benchmark datasets show that our approach achieves a state-of-the-art performance by adapting to dialogue scenarios and can also be helpful in low-resource settings for domain adaptation.

Rohit Sroch. 2021. Domain Adapted Abstractive Summarization of Dialogue using Transfer Learning. In 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence (ACAI'21). Association for Computing Machinery, New York, NY, USA, Article 94, 1–6. https://doi.org/10.1145/3508546.3508640

hybrid_utt-clusterrank_bart-base_dialogsum_sum

This model is a fine-tuned version of facebook/bart-base on DialogSum dataset for dialogue summarization task.

Model description

More information needed

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-5
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0
  • label_smoothing_factor: 0.1

Results on Test Set

  • predict_gen_len = 32.37
  • predict_rouge1 = 43.3999
  • predict_rouge2 = 17.3447
  • predict_rougeL = 35.1421
  • predict_rougeLsum = 38.1883
  • predict_samples = 500
  • predict_samples_per_second = 9.506
  • predict_steps_per_second = 1.198

Framework versions

  • Transformers>=4.8.0
  • Pytorch>=1.6.0
  • Datasets>=1.10.2
  • Tokenizers>=0.10.3

If you use this model, please cite the following paper:

@inproceedings{10.1145/3508546.3508640,
    author = {Sroch, Rohit},
    title = {Domain Adapted Abstractive Summarization of Dialogue Using Transfer Learning},
    year = {2021},
    isbn = {9781450385053},
    publisher = {Association for Computing Machinery},
    address = {New York, NY, USA},
    url = {https://doi.org/10.1145/3508546.3508640},
    doi = {10.1145/3508546.3508640},
    articleno = {94},
    numpages = {6},
    keywords = {encoder-decoder, T5, abstractive summary, PEGASUS, BART, dialogue summarization, PLMs, BERT},
    location = {Sanya, China},
    series = {ACAI'21}
} 
Downloads last month
9
Safetensors
Model size
139M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.