See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-68m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 366ab5c9fefc9a04_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/366ab5c9fefc9a04_train_data.json
type:
field_input: policy
field_instruction: redteam_query
field_output: jailbreak_query
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_card: false
hub_model_id: romainnn/01a286fd-ea04-43ca-bf49-50711b0ac07d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1716
micro_batch_size: 4
mlflow_experiment_name: /tmp/366ab5c9fefc9a04_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3562167-5bed-4c3b-9afe-0df4f910f794
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3562167-5bed-4c3b-9afe-0df4f910f794
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
01a286fd-ea04-43ca-bf49-50711b0ac07d
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1424
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1662
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.122 | 0.0012 | 1 | 4.1873 |
0.2462 | 0.1204 | 100 | 0.5273 |
0.5275 | 0.2407 | 200 | 0.2647 |
0.1192 | 0.3611 | 300 | 0.2131 |
0.1716 | 0.4815 | 400 | 0.1956 |
0.2336 | 0.6019 | 500 | 0.1854 |
0.4623 | 0.7222 | 600 | 0.1755 |
0.0811 | 0.8426 | 700 | 0.1679 |
0.0906 | 0.9630 | 800 | 0.1608 |
0.1036 | 1.0835 | 900 | 0.1567 |
0.1643 | 1.2039 | 1000 | 0.1541 |
0.0599 | 1.3243 | 1100 | 0.1486 |
0.0901 | 1.4446 | 1200 | 0.1474 |
0.0786 | 1.5650 | 1300 | 0.1446 |
0.1248 | 1.6854 | 1400 | 0.1437 |
0.0554 | 1.8057 | 1500 | 0.1427 |
0.0934 | 1.9261 | 1600 | 0.1424 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/01a286fd-ea04-43ca-bf49-50711b0ac07d
Base model
JackFram/llama-68m