Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - c5374376f204a4d7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c5374376f204a4d7_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/0b6d99d4-3ec3-452e-af4d-a9b809e76b47
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 966
micro_batch_size: 4
mlflow_experiment_name: /tmp/c5374376f204a4d7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04469673266884191
wandb_entity: null
wandb_mode: online
wandb_name: ca2935f9-23d5-4ee6-a319-969be3242f9b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ca2935f9-23d5-4ee6-a319-969be3242f9b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

0b6d99d4-3ec3-452e-af4d-a9b809e76b47

This model is a fine-tuned version of MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6738

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 966

Training results

Training Loss Epoch Step Validation Loss
2.4567 0.0003 1 2.5119
2.0662 0.0299 100 1.9284
2.0194 0.0599 200 1.8451
1.7806 0.0898 300 1.8006
1.7575 0.1198 400 1.7650
1.7162 0.1497 500 1.7349
1.7766 0.1797 600 1.7105
1.6955 0.2096 700 1.6900
1.6154 0.2395 800 1.6785
1.7653 0.2695 900 1.6738

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
21
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/0b6d99d4-3ec3-452e-af4d-a9b809e76b47

Adapter
(296)
this model