See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/llama-3-8b-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 295b115f61a3b242_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/295b115f61a3b242_train_data.json
type:
field_input: max_stars_repo_path
field_instruction: ext
field_output: content
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_card: false
hub_model_id: romainnn/3f3ee1d0-405b-4611-8c9c-e3322e2c243a
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 744
micro_batch_size: 4
mlflow_experiment_name: /tmp/295b115f61a3b242_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.018101513286510752
wandb_entity: null
wandb_mode: online
wandb_name: f3a7d252-188f-4aaf-9eeb-fcadf358cc4c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f3a7d252-188f-4aaf-9eeb-fcadf358cc4c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
3f3ee1d0-405b-4611-8c9c-e3322e2c243a
This model is a fine-tuned version of unsloth/llama-3-8b-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5077
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 744
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8197 | 0.0001 | 1 | 1.0410 |
1.0992 | 0.0118 | 100 | 0.6571 |
0.842 | 0.0236 | 200 | 0.6132 |
0.4728 | 0.0354 | 300 | 0.5764 |
0.5326 | 0.0472 | 400 | 0.5468 |
0.5253 | 0.0590 | 500 | 0.5249 |
0.3405 | 0.0708 | 600 | 0.5125 |
0.573 | 0.0826 | 700 | 0.5077 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/3f3ee1d0-405b-4611-8c9c-e3322e2c243a
Base model
unsloth/llama-3-8b-Instruct