Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - c37a11ad7da3cde2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c37a11ad7da3cde2_train_data.json
  type:
    field_input: distractor1
    field_instruction: support
    field_output: question
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/4cbab68b-ba95-437a-aaca-fe214946488f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/c37a11ad7da3cde2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8ddc6173-b32d-4564-9b2d-c31b52fa5b94
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8ddc6173-b32d-4564-9b2d-c31b52fa5b94
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

4cbab68b-ba95-437a-aaca-fe214946488f

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 795

Training results

Training Loss Epoch Step Validation Loss
10.3735 0.0025 1 10.3710
10.3131 0.2517 100 10.3242
10.3176 0.5035 200 10.3179
10.3161 0.7552 300 10.3167
10.4579 1.0069 400 10.3157
10.5179 1.2587 500 10.3149
10.8654 1.5104 600 10.3145
9.3573 1.7621 700 10.3144

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/4cbab68b-ba95-437a-aaca-fe214946488f