File size: 9,990 Bytes
24815a3
 
 
 
 
 
 
 
828c813
209a898
 
 
 
828c813
 
 
 
24815a3
d228624
 
 
 
24815a3
 
 
 
 
e3f1e15
24815a3
 
 
 
 
 
 
 
 
d228624
828c813
d228624
 
828c813
d228624
 
828c813
d228624
 
828c813
d228624
24815a3
 
e3f1e15
24815a3
e3f1e15
24815a3
 
 
 
 
 
 
 
 
e3f1e15
 
24815a3
 
 
 
 
 
 
828c813
e3f1e15
 
24815a3
e3f1e15
24815a3
 
 
 
 
 
 
 
 
 
 
e3f1e15
 
 
 
24815a3
 
 
 
828c813
 
 
24815a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f1e15
24815a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828c813
24815a3
e3f1e15
 
828c813
209a898
24815a3
 
9384823
24815a3
 
 
 
 
 
 
 
 
e84362a
24815a3
 
 
 
 
 
 
 
 
828c813
 
 
 
 
 
 
 
 
 
 
 
 
24815a3
 
209a898
24815a3
209a898
 
 
e3f1e15
209a898
e3f1e15
24815a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: bench:Get your food to go, find a bench, and kick back with a plate of dumplings.
- text: comparison:Frankly, when you compare what you can have here for lunch, versus
    McDs or so many other sandwich shops in the city, there is no comparison.
- text: ton:We had crawfish boiled and despite making a mess, it was a ton of fun
    and quite tasty as well.
- text: traffic noise:It is set far from the small street it's on, and there is no
    traffic noise.
- text: food:The only thing more wonderful than the food (which is exceptional) is
    the service.
metrics:
- f1_micro
- f1_macro
- precision_macro
- recall_macro
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: sentence-transformers/all-MiniLM-L6-v2
model-index:
- name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: f1_micro
      value: 0.8516772438803264
      name: F1_Micro
    - type: f1_macro
      value: 0.8441110611976916
      name: F1_Macro
    - type: precision_macro
      value: 0.8482610861593047
      name: Precision_Macro
    - type: recall_macro
      value: 0.8409649439480325
      name: Recall_Macro
---

# SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [ronalhung/setfit-absa-restaurants-aspect](https://huggingface.co/ronalhung/setfit-absa-restaurants-aspect)
- **SetFitABSA Polarity Model:** [ronalhung/setfit-absa-restaurants-polarity](https://huggingface.co/ronalhung/setfit-absa-restaurants-polarity)
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect    | <ul><li>'staff:But the staff was so horrible to us.'</li><li>"food:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"food:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul>                                                                                                                              |
| no aspect | <ul><li>"factor:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"deficiencies:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"Teodora:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li></ul> |

## Evaluation

### Metrics
| Label   | F1_Micro | F1_Macro | Precision_Macro | Recall_Macro |
|:--------|:---------|:---------|:----------------|:-------------|
| **all** | 0.8517   | 0.8441   | 0.8483          | 0.8410       |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "ronalhung/setfit-absa-restaurants-aspect",
    "ronalhung/setfit-absa-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 4   | 19.4181 | 45  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| no aspect | 167                   |
| aspect    | 254                   |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1    | 0.3998        | -               |
| 0.0345 | 50   | 0.3187        | 0.3072          |
| 0.0689 | 100  | 0.2744        | 0.2600          |
| 0.1034 | 150  | 0.2494        | 0.2504          |
| 0.1378 | 200  | 0.2459        | 0.2408          |
| 0.1723 | 250  | 0.2242        | 0.2210          |
| 0.2068 | 300  | 0.1802        | 0.1815          |
| 0.2412 | 350  | 0.1085        | 0.1787          |
| 0.2757 | 400  | 0.0435        | 0.1918          |
| 0.3101 | 450  | 0.0143        | 0.1832          |
| 0.3446 | 500  | 0.0063        | 0.1971          |
| 0.3790 | 550  | 0.004         | 0.1945          |
| 0.4135 | 600  | 0.002         | 0.2005          |

### Framework Versions
- Python: 3.11.13
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- spaCy: 3.8.7
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->