Edit model card

BigBird base (ITC) fine-tuned on MP-DocVQA

This is BigBird-base trained on TriviaQA from Google hub and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.

  • Due to Huggingface implementation, the global tokens are defined according to the Internal Transformer Construction (ITC) strategy.

This model was used as a baseline in Hierarchical multimodal transformers for Multi-Page DocVQA.

  • Results on the MP-DocVQA dataset are reported in Table 2.
  • Training hyperparameters can be found in Table 8 of Appendix D.

How to use

How to use this model to perform inference on a sample question and context in PyTorch:

from transformers import BigBirdForQuestionAnswering, BigBirdTokenizerFast

# by default its in `block_sparse` mode with num_random_blocks=3, block_size=64
model = BigBirdForQuestionAnswering.from_pretrained("rubentito/bigbird-base-itc-mpdocvqa")

# you can change `attention_type` to full attention like this:
model = BigBirdForQuestionAnswering.from_pretrained("rubentito/bigbird-base-itc-mpdocvqa", attention_type="original_full")

# you can change `block_size` & `num_random_blocks` like this:
model = BigBirdForQuestionAnswering.from_pretrained("rubentito/bigbird-base-itc-mpdocvqa", block_size=16, num_random_blocks=2)

tokenizer = BigBirdTokenizerFast.from_pretrained("rubentito/bigbird-base-itc-mpdocvqa")

question = "Replace me by any text you'd like."
context = "Put some context for answering"

encoded_input = tokenizer(question, context, return_tensors='pt')
output = model(**encoded_input)

start_pos = torch.argmax(output.start_logits, dim=-1).item()
end_pos = torch.argmax(output.end_logits, dim=-1).item()

context_tokens = tokenizer.convert_ids_to_tokens(encoded_input["input_ids"][0].tolist())
answer_tokens = context_tokens[start_pos: end_pos]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))

Metrics

Average Normalized Levenshtein Similarity (ANLS)

The standard metric for text-based VQA tasks (ST-VQA and DocVQA). It evaluates the method's reasoning capabilities while smoothly penalizes OCR recognition errors. Check Scene Text Visual Question Answering for detailed information.

Answer Page Prediction Accuracy (APPA)

In the MP-DocVQA task, the models can provide the index of the page where the information required to answer the question is located. For this subtask accuracy is used to evaluate the predictions: i.e. if the predicted page is correct or not. Check Hierarchical multimodal transformers for Multi-Page DocVQA for detailed information.

Model results

Extended experimentation can be found in Table 2 of Hierarchical multimodal transformers for Multi-Page DocVQA. You can also check the live leaderboard at the RRC Portal.

Model HF name Parameters ANLS APPA
Bert large rubentito/bert-large-mpdocvqa 334M 0.4183 51.6177
Longformer base rubentito/longformer-base-mpdocvqa 148M 0.5287 71.1696
BigBird ITC base rubentito/bigbird-base-itc-mpdocvqa 131M 0.4929 67.5433
LayoutLMv3 base rubentito/layoutlmv3-base-mpdocvqa 125M 0.4538 51.9426
T5 base rubentito/t5-base-mpdocvqa 223M 0.5050 0.0000
Hi-VT5 rubentito/hivt5-base-mpdocvqa 316M 0.6201 79.23

Citation Information

@article{tito2022hierarchical,
  title={Hierarchical multimodal transformers for Multi-Page DocVQA},
  author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
  journal={arXiv preprint arXiv:2212.05935},
  year={2022}
}
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rubentito/bigbird-base-itc-mpdocvqa

Finetuned
(1)
this model

Dataset used to train rubentito/bigbird-base-itc-mpdocvqa