|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
- finance |
|
model_format: pickle |
|
model_file: skops-ise057qg.pkl |
|
widget: |
|
- structuredData: |
|
Bene_Country: |
|
- COMOROS |
|
- CANADA |
|
- MOROCCO |
|
Sender_Country: |
|
- SRI-LANKA |
|
- USA |
|
- USA |
|
Transaction_Type: |
|
- MOVE-FUNDS |
|
- PAY-CHECK |
|
- MAKE-PAYMENT |
|
USD_amount: |
|
- 598.31 |
|
- 398.72 |
|
- 87.03 |
|
--- |
|
|
|
# Model description |
|
This is a Gaussian Naive Bayes model trained on a synthetic dataset, containining a large variety of transaction types representing normal activities as well as |
|
abnormal/fraudulent activities generated by J.P. Morgan AI Research. The model predicts whether a transaction is normal or fraudulent. |
|
|
|
## Intended uses & limitations |
|
For educational purposes |
|
|
|
## Training Procedure |
|
The data preprocessing steps applied include the following: |
|
- Dropping high cardinality features. This includes Transaction ID, Sender ID, Sender Account, Beneficiary ID, Beneficiary Account, Sender Sector |
|
- Dropping no variance features. This includes Sender LOB |
|
- Dropping Time and date feature since the model is not time-series based |
|
- Transforming and Encoding categorical features namely: Sender Country, Beneficiary Country, Transaction Type, and the target variable, Label |
|
- Applying feature scaling on all features |
|
- Splitting the dataset into training/test set using 85/15 split ratio |
|
- Handling imbalanced dataset using imblearn framework and applying RandomUnderSampler method to eliminate noise which led to a 2.5% improvement in accuracy |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6662300a0ad8c45a1ce59190/BEi0CfOfJ2ytxD5VoN4IM.png) |
|
|
|
### Hyperparameters |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|----------------------------------------------|---------------------------------------------------------------------------| |
|
| memory | | |
|
| steps | [('preprocessorAll', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))])), ('classifier', GaussianNB())] | |
|
| verbose | False | |
|
| preprocessorAll | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))]) | |
|
| classifier | GaussianNB() | |
|
| preprocessorAll__n_jobs | | |
|
| preprocessorAll__remainder | passthrough | |
|
| preprocessorAll__sparse_threshold | 0.3 | |
|
| preprocessorAll__transformer_weights | | |
|
| preprocessorAll__transformers | [('cat', Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]), ['Sender_Country', 'Bene_Country', 'Transaction_Type']), ('num', Pipeline(steps=[('scale', StandardScaler())]), Index(['USD_amount'], dtype='object'))] | |
|
| preprocessorAll__verbose | False | |
|
| preprocessorAll__verbose_feature_names_out | True | |
|
| preprocessorAll__cat | Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]) | |
|
| preprocessorAll__num | Pipeline(steps=[('scale', StandardScaler())]) | |
|
| preprocessorAll__cat__memory | | |
|
| preprocessorAll__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False))] | |
|
| preprocessorAll__cat__verbose | False | |
|
| preprocessorAll__cat__onehot | OneHotEncoder(handle_unknown='ignore', sparse_output=False) | |
|
| preprocessorAll__cat__onehot__categories | auto | |
|
| preprocessorAll__cat__onehot__drop | | |
|
| preprocessorAll__cat__onehot__dtype | <class 'numpy.float64'> | |
|
| preprocessorAll__cat__onehot__handle_unknown | ignore | |
|
| preprocessorAll__cat__onehot__max_categories | | |
|
| preprocessorAll__cat__onehot__min_frequency | | |
|
| preprocessorAll__cat__onehot__sparse | deprecated | |
|
| preprocessorAll__cat__onehot__sparse_output | False | |
|
| preprocessorAll__num__memory | | |
|
| preprocessorAll__num__steps | [('scale', StandardScaler())] | |
|
| preprocessorAll__num__verbose | False | |
|
| preprocessorAll__num__scale | StandardScaler() | |
|
| preprocessorAll__num__scale__copy | True | |
|
| preprocessorAll__num__scale__with_mean | True | |
|
| preprocessorAll__num__scale__with_std | True | |
|
| classifier__priors | | |
|
| classifier__var_smoothing | 1e-09 | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
<style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessorAll',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore',sparse_output=False))]),['Sender_Country','Bene_Country','Transaction_Type']),('num',Pipeline(steps=[('scale',StandardScaler())]),Index(['USD_amount'], dtype='object'))])),('classifier', GaussianNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessorAll',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore',sparse_output=False))]),['Sender_Country','Bene_Country','Transaction_Type']),('num',Pipeline(steps=[('scale',StandardScaler())]),Index(['USD_amount'], dtype='object'))])),('classifier', GaussianNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-47" type="checkbox" ><label for="sk-estimator-id-47" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessorAll: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore',sparse_output=False))]),['Sender_Country', 'Bene_Country','Transaction_Type']),('num',Pipeline(steps=[('scale', StandardScaler())]),Index(['USD_amount'], dtype='object'))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-48" type="checkbox" ><label for="sk-estimator-id-48" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>['Sender_Country', 'Bene_Country', 'Transaction_Type']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-49" type="checkbox" ><label for="sk-estimator-id-49" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore', sparse_output=False)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-50" type="checkbox" ><label for="sk-estimator-id-50" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index(['USD_amount'], dtype='object')</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-51" type="checkbox" ><label for="sk-estimator-id-51" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-52" type="checkbox" ><label for="sk-estimator-id-52" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-53" type="checkbox" ><label for="sk-estimator-id-53" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-54" type="checkbox" ><label for="sk-estimator-id-54" class="sk-toggleable__label sk-toggleable__label-arrow">GaussianNB</label><div class="sk-toggleable__content"><pre>GaussianNB()</pre></div></div></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
| Metric | Value | |
|
|----------|----------| |
|
| accuracy | 0.794582 | |
|
|
|
## Model Explainability |
|
|
|
SHAP was used to determine the important features that helps the model make decisions |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6662300a0ad8c45a1ce59190/rQYxJoz86TtdkSSSGnCOr.png) |
|
|
|
### Confusion Matrix |
|
|
|
![Confusion Matrix](confusion_matrix.png) |
|
|
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: Seifullah Bello |
|
|