|
--- |
|
language: |
|
- "code" |
|
thumbnail: "https://to-be-updated" |
|
tags: |
|
- code generation |
|
- code translation |
|
- bug fixing |
|
license: "mit" |
|
datasets: |
|
- CodeSearchNet |
|
- CodeXGLUE |
|
metrics: |
|
- EM |
|
- CodeBLEU |
|
--- |
|
|
|
Pretrained model for NatGen: Generative Pre-training by “Naturalizing” Source Code [[`paper`]](https://dl.acm.org/doi/abs/10.1145/3540250.3549162),[[`code`]](https://github.com/saikat107/NatGen),[[`slide`]](https://docs.google.com/presentation/d/1T6kjiohAAR1YvcNvTASR94HptA3xHGCl/edit?usp=sharing&ouid=111755026725574085503&rtpof=true&sd=true). |
|
|
|
To load the model, |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
tokenizer = AutoTokenizer.from_pretrained("saikatc/NatGen") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("saikatc/NatGen") |
|
``` |
|
|
|
|
|
For citation, |
|
``` |
|
@inproceedings{chakraborty2022natgen, |
|
author = {Chakraborty, Saikat and Ahmed, Toufique and Ding, Yangruibo and Devanbu, Premkumar T. and Ray, Baishakhi}, |
|
title = {NatGen: Generative Pre-Training by “Naturalizing” Source Code}, |
|
year = {2022}, |
|
isbn = {9781450394130}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3540250.3549162}, |
|
doi = {10.1145/3540250.3549162}, |
|
booktitle = {Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering}, |
|
pages = {18–30}, |
|
numpages = {13}, |
|
keywords = {Neural Network, Semantic Preserving Transformation, Source Code Transformer, Source Code Pre-training}, |
|
location = {Singapore, Singapore}, |
|
series = {ESEC/FSE 2022} |
|
} |
|
``` |
|
|
|
|