ELISARCyberAIEdge7B-LoRA-GGUF
Offline-ready, quantized LLaMA edge model for cybersecurity use cases
π Paper Title
ELISAR: An Adaptive Framework for Cybersecurity Risk Assessment Powered by GenAI
π€ Authors
- Sabri ALLANI, PhD β AI & Cybersecurity Expert
- Karam BOU-CHAAYA, PhD β AI & Cybersecurity Expert
- Helmi RAIS β Global Practice Lead, Expleo France
π Date
May 31, 2025
π Model Repository
https://huggingface.co/sallani/ELISARCyberAIEdge7B-LoRA-GGUF
π Publication
This work will be published by Springer in the following book:
π https://link.springer.com/book/9783031935978
ποΈ Expected publication date: July 10, 2025
π§ Summary
ELISAR is a fine-tuned LoRA model based on Mistral-7B, designed for contextualized cybersecurity risk assessment using Retrieval-Augmented Generation and Agentic AI capabilities. The model targets real-world use cases including:
- Threat modeling (Blue ELISAR)
- Offensive use-case generation (Red ELISAR)
- GRC compliance automation (GRC ELISAR)
π Use Cases
- ISO/IEC 42001 & NIS2 risk evaluation
- Threat scenario generation
- AI audit preparation and reporting
- Secure AI system design
- ....
π Overview
ELISARCyberAIEdge7B-LoRA-GGUF is a LoRA-finetuned, GGUF-quantized version of the Mistral-7B backbone tailored for edge deployment in cybersecurity and blue-team AI scenarios. Developed by Dr. Sabri Sallani (PhD), this model integrates:
π₯ Download model file:
β‘οΈ Click here to download elisar_merged.gguf
(~5.13 GB GGUF quantized model for offline inference)
- Base model: Mistral-7B-v0.3 (FP16 / BF16)
- LoRA adapter:
sallani/ELISARCyberAIEdge7B
- Quantization: Converted to GGUF format and optionally quantized to Q4_K_M (4-bit) for efficient inference on resource-constrained devices (NVIDIA T4, desktop GPUs, etc.).
This pipeline produces a single file (elisar_merged.gguf
) of ~160 MiB that you can deploy offline using frameworks like llama.cpp
or run through minimal Torch-based inference.
Key features:
- Compact (< 5 Go) quantized GGUF file
- Edge-friendly: runs on CPU or low-end GPUs with fast cold-start
- Cybersecurity-tuned: trained to answer cybersecurity questions, perform log analysis, malware triage, and blue-team playbooks
- Offline inference: execute entirely without internet access
π Quickstart
1. Download model files
# Clone or download the GGUF file directly:
wget https://huggingface.co/sallani/ELISARCyberAIEdge7B-LoRA-GGUF/resolve/main/elisar_merged.gguf -O elisar_merged.gguf
Alternatively, using the Hugging Face Hub CLI:
pip install huggingface_hub
huggingface-cli login # enter HF_TOKEN
huggingface-cli repo clone sallani/ELISARCyberAIEdge7B-LoRA-GGUF
cd ELISARCyberAIEdge7B-LoRA-GGUF
tree
# βββ elisar_merged.gguf
# βββ README.md
πΏ Installation
1. llama.cpp (Offline inference)
# Clone llama.cpp repository (if not already):
git clone --depth 1 https://github.com/ggml-org/llama.cpp.git
cd llama.cpp
# Build with GPU support (optional)
make clean
make CMAKE_CUDA=ON CMAKE_CUDA_ARCH=sm75
# Or build CPU-only:
# make
2. Python (Transformers) β Optional hybrid inference
python3 -m venv venv
source venv/bin/activate
pip install torch transformers peft
β‘οΈ Usage Examples
A. Offline inference with llama.cpp
cd llama.cpp
./main -m ../ELISARCyberAIEdge7B-LoRA-GGUF/elisar_merged.gguf -c 2048 -b 8 -t 8
B. Python / Transformers + PEFT Inference (Hybrid)
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
model_id = "sallani/ELISARCyberAIEdge7B-LoRA-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
)
prompt = "You are a blue-team AI assistant. Analyze the following network log for suspicious patterns: ..."
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
gen_config = GenerationConfig(
temperature=0.7,
top_p=0.9,
max_new_tokens=256,
)
output_ids = model.generate(**inputs, **gen_config.to_dict())
answer = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(answer)
π¦ File Structure
ELISARCyberAIEdge7B-LoRA-GGUF/
βββ elisar_merged.gguf
βββ README.md
π§ Model Details & Training
- Base: Mistral-7B-v0.3 (7B params)
- LoRA adapter:
sallani/ELISARCyberAIEdge7B
- Quantization: GGUF Q4_K_M, final size ~160 MiB
- Training data: CVEs, SAST, security logs, blue-team playbooks
- License: Apache 2.0
Developed by Dr. Sabri Sallani, PhD β Expert in Artificial Intelligence & Cybersecurity.
π Prompt Guidelines
- Use instruction format:
### Instruction:
/### Response:
- Add relevant logs/code in prompt
- Not a replacement for certified analysts
π Citation
If you use this model or refer to the ELISAR framework in your research, please cite:
@incollection{elisar2025,
author = {Sabri Sallani and Karam Bou-Chaaya and Helmi Rais},
title = {ELISAR: An Adaptive Framework for Cybersecurity Risk Assessment Powered by GenAI},
booktitle = {Communications in Computer and Information Science (CCIS, volume 2518)},
publisher = {Springer},
year = {2025},
note = {To be published on July 10, 2025},
url = {https://link.springer.com/book/9783031935978}
}
Or simply cite:
Sallani, S., Bou-Chaaya, K., & Rais, H. (2025). ELISAR: An Adaptive Framework for Cybersecurity Risk Assessment Powered by GenAI. In Springer Book on AI for Cybersecurity. Publication date: July 10, 2025. https://link.springer.com/book/9783031935978
π¬ Support & Contact
- π¨οΈ HF Discussion
- π§ [email protected]
- π LinkedIn
Thank you for using ELISARCyberAIEdge7B-LoRA-GGUF β helping secure your edge AI.
- Downloads last month
- 1,477
16-bit
Model tree for sallani/ELISARCyberAIEdge7B-LoRA-GGUF
Base model
mistralai/Mistral-7B-v0.3