See axolotl config
axolotl version: 0.5.0
adapter: qlora
base_model: meta-llama/Llama-3.1-70B-Instruct
bf16: true
chat_template: chatml
datasets:
- field_human: user
field_messages: messages
field_model: assistant
field_system: system
message_field_content: content
message_field_role: role
path: s3://tensorkube-datasets-bucket-3fb7f7dc-da71-4990/vaero-data.jsonl
type: chat_template
debug: false
deepspeed: null
early_stopping_patience: null
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: false
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_cpu_ram_efficient_loading: true
fsdp_limit_all_gathers: true
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_use_orig_params: false
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
group_by_length: false
hf_org_id: samagra-tensorfuse
learning_rate: 7.0e-05
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: false
lora_target_modules:
- q_proj
- v_proj
- gate_proj
- up_proj
- k_proj
- down_proj
- o_proj
lr_scheduler: linear
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 5
optimizer: adamw_torch
output_dir: ./outputs/out/qlora-llama3-70b
pad_to_sequence_len: false
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens:
pad_token: <|finetune_right_pad_id|>
strict: false
tf32: false
tokenizer_add_special_tokens: true
tokenizer_padding_side: right
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: samagra14-tensorfuse
wandb_mode: online
wandb_name: 2025-04-02-0015
wandb_project: green-test-templatev7432
wandb_watch: none
warmup_steps: 5
weight_decay: 0.1
xformers_attention: null
outputs/out/qlora-llama3-70b
This model is a fine-tuned version of meta-llama/Llama-3.1-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4426
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2263 | 0.1333 | 1 | 2.0908 |
1.9463 | 0.9333 | 7 | 1.8584 |
1.7347 | 1.8667 | 14 | 1.6178 |
1.6348 | 2.8 | 21 | 1.5186 |
1.6737 | 3.7333 | 28 | 1.4653 |
1.5217 | 4.6667 | 35 | 1.4426 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for samagra-tensorfuse/vaero-adapter-tokens
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.1-70B-Instruct