Built with Axolotl

See axolotl config

axolotl version: 0.5.0

adapter: qlora
base_model: meta-llama/Llama-3.1-70B-Instruct
bf16: true
chat_template: tokenizer_default
datasets:
- field_human: user
  field_messages: messages
  field_model: assistant
  field_system: system
  message_field_content: content
  message_field_role: role
  path: s3://tensorkube-datasets-bucket-3fb7f7dc-da71-4990/vaero-data.jsonl
  type: chat_template
debug: false
deepspeed: null
early_stopping_patience: null
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: false
fsdp:
- full_shard
- auto_wrap
fsdp_config:
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_cpu_ram_efficient_loading: true
  fsdp_limit_all_gathers: true
  fsdp_offload_params: false
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sync_module_states: true
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_use_orig_params: false
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
group_by_length: false
hf_org_id: samagra-tensorfuse
learning_rate: 7.0e-05
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: false
lora_target_modules:
- q_proj
- v_proj
- gate_proj
- up_proj
- k_proj
- down_proj
- o_proj
lr_scheduler: linear
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: ./outputs/out/qlora-llama3-70b
pad_to_sequence_len: false
peft_use_rslora: true
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens:
  pad_token: <|finetune_right_pad_id|>
strict: false
tf32: false
tokenizer_add_special_tokens: true
tokenizer_padding_side: right
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: samagra14-tensorfuse
wandb_mode: online
wandb_name: 2025-04-03-02
wandb_project: green-test-templatev7432-tok
wandb_watch: none
warmup_steps: 5
weight_decay: 0.1
xformers_attention: null

outputs/out/qlora-llama3-70b

This model is a fine-tuned version of meta-llama/Llama-3.1-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.7623 0.9333 7 1.6805

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for samagra-tensorfuse/vaero-adapter-tokens-tokenizer-default

Adapter
(41)
this model