sameerbanchhor's picture
Update README.md
a428901 verified
metadata
license: mit
datasets:
  - sameerbanchhor/CHATTISGARHI-TTS-F
language:
  - hi
pipeline_tag: text-to-speech
tags:
  - chattisgarhi
  - chhattigarh

Chhattisgarhi Text-to-Speech (TTS) Model — VITS Based

A deep learning-based text-to-speech (TTS) model for the Chhattisgarhi language, trained using the VITS architecture. This project is designed to make technology more accessible for the people of Chhattisgarh by converting Chhattisgarhi text into natural, regional speech.

Author: Sameer Banchhor
MSc Student at Hemchand Yadav University
📧 Email: [email protected]
🐙 GitHub: @sameer-banchhor-git
🔗 LinkedIn: Sameer Banchhor


🌟 Project Highlights

  • 🔊 Language Support: Chhattisgarhi (regional dialects and tones)
  • 🧠 Model Architecture: VITS (Variational Inference Text-to-Speech)
  • 🎯 Goal: Enable high-quality speech generation for educational, informational, and accessibility applications in Chhattisgarh
  • 🛠️ Current Status: Model trained and functional; app development planned

📚 Dataset

Primary Dataset:
CHATTISGARHI-TTS-F on Hugging Face — curated and released by the author

Data Composition:

  • Regional sentences in Chhattisgarhi, including various tones and expressions
  • Transcriptions aligned with high-quality audio
  • Data sourced from:
    • YouTube spoken content (sentence-transcription pairs)
    • IISE dataset for phonetic richness and clarity

Sample Sentences with Regional Tone:

  1. "राजस्थान के नामी ब्यंजन चूरमालाड़ू गुड़ के पाग म गहूँ के दरदरहा पिसान के लाड़ू म तिली अउ नरियल के सुवाद म सजथे"
  2. "दुग्ध क्रान्ति भारत के योजना हे जेखर ले भारत म दूध के कमी ला दुरिहा करे जा सकथे एला श्वेत क्रांति घलोक कहिथे"
  3. "जम्मू कश्मीर म पर्यटन उद्योग ला बढ़ावा देना उहाँ के अर्थबेवस्था ला सुचारू रूप ले चलाय बर जरुरी हे"

⚙️ Model Training

Component Details
Architecture VITS (with adversarial training)
Framework PyTorch
Audio Sampling 22050 Hz (standard TTS rate)
Dataset Size 27 GB
Optimizer Adam
GPU NVIDIA RTX 3090
Vocoder Used Integrated with VITS
Text Normalization Custom normalization for Devanagari

🧪 Inference Example

from models import Synthesizer

tts = Synthesizer(
    checkpoint_path="models/chhattisgarhi_vits.pth", 
    config_path="configs/config.json"
)

tts.speak("जम्मू कश्मीर म पर्यटन उद्योग ला बढ़ावा देना उहाँ के अर्थबेवस्था ला सुचारू रूप ले चलाय बर जरुरी हे")

🛣️ Roadmap

  • ✅ Train and test baseline VITS model on Chhattisgarhi dataset
  • 🔄 Add support for tonal variation and emphasis
  • 🧹 Improve preprocessing for low-resource sentence cleaning
  • 📱 Develop full-featured TTS application (mobile/desktop/web)
  • 🌐 Incorporate transliteration (for users who can’t type in Devanagari)

📄 License

MIT License (recommended for open-source contributions)

🤝 Contributing

If you're a linguist, developer, or enthusiast in low-resource languages and speech tech, contributions are welcome! Feel free to fork the repo or reach out directly.


🙋 Support & Contact

For any issues, suggestions, or collaborations:

📧 Email: [email protected] 📍 GitHub: github.com/sameer-banchhor-git