large-algae-vit-wirs

This model is a fine-tuned version of samitizerxu/large-algae-vit-wirs on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9128
  • Accuracy: 0.6209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1662 1.0 120 0.9128 0.6209
1.0885 2.0 240 0.9469 0.6138
1.1315 3.0 360 1.0919 0.5757
1.0542 4.0 480 1.2291 0.5599
1.028 5.0 600 1.1931 0.5599
1.0023 6.0 720 1.1548 0.5675
1.0176 7.0 840 1.0932 0.5757
0.992 8.0 960 1.1387 0.5751
0.9891 9.0 1080 1.2387 0.5464
0.9635 10.0 1200 1.3772 0.5428
0.9764 11.0 1320 1.4329 0.5258
0.9375 12.0 1440 1.2830 0.5522
0.9574 13.0 1560 1.4003 0.5229
0.9907 14.0 1680 1.3447 0.5423
0.9507 15.0 1800 1.2907 0.5604
0.9866 16.0 1920 1.4578 0.5393
0.9297 17.0 2040 1.4779 0.5282
0.9385 18.0 2160 1.3874 0.5469
0.9951 19.0 2280 1.2976 0.5587
0.9794 20.0 2400 1.3110 0.5569
0.9974 21.0 2520 1.3649 0.5276
0.9284 22.0 2640 1.3713 0.5364
0.9144 23.0 2760 1.4117 0.5340
0.9771 24.0 2880 1.3836 0.5358
0.8994 25.0 3000 1.5077 0.5282
0.9061 26.0 3120 1.4622 0.5329
0.9071 27.0 3240 1.4303 0.5393
0.9288 28.0 3360 1.4556 0.5329
0.9285 29.0 3480 1.3900 0.5446
0.8955 30.0 3600 1.4082 0.5387

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support