vit-base-patch16-224-finetuned-algae-wirs

This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9663
  • Accuracy: 0.6021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0733 1.0 120 1.0611 0.5781
1.0243 2.0 240 1.0628 0.5663
0.9852 3.0 360 1.0083 0.5845
0.94 4.0 480 1.0005 0.5933
0.9744 5.0 600 1.0102 0.5786
0.9623 6.0 720 0.9840 0.5763
0.9021 7.0 840 0.9869 0.5798
0.9181 8.0 960 0.9755 0.5827
0.8774 9.0 1080 0.9808 0.5798
0.8294 10.0 1200 0.9663 0.6021
0.8015 11.0 1320 0.9739 0.5980
0.8063 12.0 1440 0.9811 0.6009
0.7857 13.0 1560 0.9833 0.5933
0.7085 14.0 1680 0.9887 0.5998
0.7414 15.0 1800 0.9928 0.5974
0.7442 16.0 1920 0.9963 0.5992
0.7142 17.0 2040 1.0041 0.6004
0.7488 18.0 2160 1.0034 0.5962
0.6731 19.0 2280 1.0055 0.6021
0.6905 20.0 2400 1.0033 0.6009

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support