metadata
license: apache-2.0
tags:
- object-detection
- detectron2
- wildlife
- animals
- faster-rcnn
- inception
datasets:
- custom-wildlife-dataset
metrics:
- AP
- AP50
- AP75
model-index:
- name: inception-wildlife-detector-detectron2
results:
- task:
type: object-detection
name: Object Detection
dataset:
type: custom-wildlife-dataset
name: Wildlife Detection Dataset
metrics:
- type: AP
value: 45.7
name: Average Precision
- type: AP50
value: 81.8
name: AP at IoU=0.50
- type: AP75
value: 47.7
name: AP at IoU=0.75
Wildlife Detector - Detectron2
A Faster R-CNN model with optimized Inception v1 backbone for detecting 10 wildlife species.
Classes
- Antelope
- Buffalo
- Elephant
- Giraffe
- Gorilla
- Leopard
- Lion
- Rhino
- Wolf
- Zebra
Performance
Metric | Value |
---|---|
AP | 45.7% |
AP50 | 81.8% |
AP75 | 47.7% |
Per-Class Performance (AP)
Animal | AP | Animal | AP |
---|---|---|---|
Buffalo | 58.9% | Elephant | 58.5% |
Gorilla | 51.2% | Leopard | 49.4% |
Wolf | 48.0% | Antelope | 46.4% |
Rhino | 44.1% | Zebra | 43.7% |
Lion | 31.9% | Giraffe | 24.5% |
Usage
import torch
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2 import model_zoo
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="mynane/inception-wildlife-detector-detectron2",
filename="pytorch_model.bin"
)
# Setup config
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_C4_3x.yaml"))
cfg.MODEL.WEIGHTS = model_path
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 10
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
# Create predictor
predictor = DefaultPredictor(cfg)
# Inference
import cv2
image = cv2.imread("wildlife_image.jpg")
outputs = predictor(image)
Model Details
- Architecture: Faster R-CNN with Optimized Inception v1 backbone
- Framework: Detectron2
- Input Size: 800x1333 (min x max)
- Confidence Threshold: 0.5