Safetensors
modernbert

SparseModernBERT α=2.0 Model Card

Model Overview

SparseModernBERT-alpha2.0 is a masked language model based on ModernBERT that replaces the standard softmax attention with an adaptive sparse attention mechanism (AdaSplash) using Triton.

The sparsity parameter α = 2.0 yields highly sparse attention patterns, improving efficiency while maintaining performance.

Key features:

  • Sparsity (α): 2.0
  • Tokenization: same as ModernBERT
  • Pretraining: masked language modeling on a large web corpus

Usage

Use the codebase from: https://github.com/deep-spin/SparseModernBERT

from transformers import AutoTokenizer
from sparse_modern_bert import CustomModernBertModel

model_id = "sardinelab/SparseModernBERT-alpha2.0"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model     = CustomModernBertModel.from_pretrained(model_id, trust_remote_code=True)

Citation

If you use this model in your work, please cite:

@article{goncalves2025adasplash,
  title={AdaSplash: Adaptive Sparse Flash Attention},
  author={Gon\c{c}alves, Nuno and Treviso, Marcos and Martins, Andr\'e F. T.},
  journal={arXiv preprint arXiv:2502.12082},
  year={2025}
}
Downloads last month
2
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train sardinelab/SparseModernBERT-alpha2.0