SparseModernBERT α=2.0 Model Card
Model Overview
SparseModernBERT-alpha2.0 is a masked language model based on ModernBERT that replaces the standard softmax attention with an adaptive sparse attention mechanism (AdaSplash) using Triton.
The sparsity parameter α = 2.0 yields highly sparse attention patterns, improving efficiency while maintaining performance.
Key features:
- Sparsity (α): 2.0
- Tokenization: same as ModernBERT
- Pretraining: masked language modeling on a large web corpus
Usage
Use the codebase from: https://github.com/deep-spin/SparseModernBERT
from transformers import AutoTokenizer
from sparse_modern_bert import CustomModernBertModel
model_id = "sardinelab/SparseModernBERT-alpha2.0"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = CustomModernBertModel.from_pretrained(model_id, trust_remote_code=True)
Citation
If you use this model in your work, please cite:
@article{goncalves2025adasplash,
title={AdaSplash: Adaptive Sparse Flash Attention},
author={Gon\c{c}alves, Nuno and Treviso, Marcos and Martins, Andr\'e F. T.},
journal={arXiv preprint arXiv:2502.12082},
year={2025}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support