scbtm's picture
End of training
2698e61 verified
|
raw
history blame
3.05 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: ModernBERT_wine_quality_reviews_ft
    results: []

ModernBERT_wine_quality_reviews_ft

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6800
  • Accuracy: 0.6953
  • F1: 0.6945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2688 0.0590 250 1.1315 0.4781 0.4463
1.0574 0.1181 500 0.9664 0.5575 0.5412
0.9229 0.1771 750 0.8647 0.6070 0.6007
0.8654 0.2361 1000 0.8665 0.6089 0.5922
0.8229 0.2952 1250 0.7857 0.6448 0.6448
0.8054 0.3542 1500 0.8515 0.6218 0.5993
0.786 0.4132 1750 0.7533 0.6601 0.6552
0.781 0.4723 2000 0.8133 0.6305 0.6278
0.7563 0.5313 2250 0.7770 0.6480 0.6473
0.7638 0.5903 2500 0.7248 0.6767 0.6769
0.7384 0.6494 2750 0.7520 0.6597 0.6574
0.7405 0.7084 3000 0.7615 0.6545 0.6515
0.7222 0.7674 3250 0.7191 0.6790 0.6716
0.7184 0.8264 3500 0.7037 0.6862 0.6837
0.6984 0.8855 3750 0.7264 0.6716 0.6678
0.6995 0.9445 4000 0.7455 0.6663 0.6646
0.713 1.0035 4250 0.7294 0.6752 0.6701
0.6508 1.0626 4500 0.6938 0.6872 0.6871
0.642 1.1216 4750 0.7266 0.6716 0.6691
0.635 1.1806 5000 0.6868 0.6913 0.6900
0.6278 1.2397 5250 0.6800 0.6953 0.6945

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0