metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: >-
Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
Arabia continue to take somewhat differing stances on regional conflicts
such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
the Southern Movement, which has fought against Saudi-backed forces, and
the Syrian Civil War, where the UAE has disagreed with Saudi support for
Islamist movements.[4]
- text: >-
Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large
scale manufacturing industries include aluminium production, food
processing, metal fabrication, wood and paper products. Mining,
manufacturing, electricity, gas, water, and waste services accounted for
16.5% of GDP in 2013.[17] The primary sector continues to dominate New
Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
- text: >-
who was the first president of indian science congress meeting held in
kolkata in 1914
- text: >-
Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
as a single after a fourteen-year breakup. It was also the first song
written by bandmates Don Henley and Glenn Frey when the band reunited.
"Get Over It" was played live for the first time during their Hell Freezes
Over tour in 1994. It returned the band to the U.S. Top 40 after a
fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
was not played live by the Eagles after the "Hell Freezes Over" tour in
1994. It remains the group's last Top 40 hit in the U.S.
- text: >-
Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert
to the faith, as related in Acts of the Apostles.
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: >-
Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions
tuples
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.1733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.12000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.6
name: Dot Recall@5
- type: dot_recall@10
value: 0.8
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5294275268594165
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.44701587301587303
name: Dot Mrr@10
- type: dot_map@100
value: 0.4547435439455525
name: Dot Map@100
- type: query_active_dims
value: 6.380000114440918
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9997909704437966
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 56.05611801147461
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9981634192382061
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.58
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.3533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.32800000000000007
name: Dot Precision@5
- type: dot_precision@10
value: 0.24600000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.04296449405849682
name: Dot Recall@1
- type: dot_recall@3
value: 0.07246863989183633
name: Dot Recall@3
- type: dot_recall@5
value: 0.09285358111876901
name: Dot Recall@5
- type: dot_recall@10
value: 0.11634922767333658
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.31292844524261265
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.47585714285714287
name: Dot Mrr@10
- type: dot_map@100
value: 0.13754623990324893
name: Dot Map@100
- type: query_active_dims
value: 4.760000228881836
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999844046909479
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 69.88655853271484
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9977102890199622
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.20666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.07600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.37
name: Dot Recall@1
- type: dot_recall@3
value: 0.58
name: Dot Recall@3
- type: dot_recall@5
value: 0.64
name: Dot Recall@5
- type: dot_recall@10
value: 0.71
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5476944409397304
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5072222222222222
name: Dot Mrr@10
- type: dot_map@100
value: 0.4973273986984246
name: Dot Map@100
- type: query_active_dims
value: 9.4399995803833
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9996907149079227
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 51.11539077758789
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998325293533268
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.38000000000000006
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6066666666666668
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7066666666666667
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38000000000000006
name: Dot Precision@1
- type: dot_precision@3
value: 0.24444444444444444
name: Dot Precision@3
- type: dot_precision@5
value: 0.19466666666666668
name: Dot Precision@5
- type: dot_precision@10
value: 0.134
name: Dot Precision@10
- type: dot_recall@1
value: 0.24432149801949896
name: Dot Recall@1
- type: dot_recall@3
value: 0.39082287996394544
name: Dot Recall@3
- type: dot_recall@5
value: 0.4442845270395897
name: Dot Recall@5
- type: dot_recall@10
value: 0.5421164092244455
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.46335013768058647
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4766984126984127
name: Dot Mrr@10
- type: dot_map@100
value: 0.36320572751574204
name: Dot Map@100
- type: query_active_dims
value: 6.859999974568685
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9997752440870661
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 57.281252631734205
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9981232798430071
name: Corpus Sparsity Ratio
Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions tuples
This is a Asymmetric Inference-free SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): Router(
(query_0_SparseStaticEmbedding): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
(document_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
(document_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("seank333111/inference-free-splade-distilbert-base-uncased-nq")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[5.9751, 0.2390, 0.0000]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
andNanoNQ
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
---|---|---|---|
dot_accuracy@1 | 0.32 | 0.44 | 0.38 |
dot_accuracy@3 | 0.52 | 0.48 | 0.62 |
dot_accuracy@5 | 0.6 | 0.54 | 0.68 |
dot_accuracy@10 | 0.8 | 0.58 | 0.74 |
dot_precision@1 | 0.32 | 0.44 | 0.38 |
dot_precision@3 | 0.1733 | 0.3533 | 0.2067 |
dot_precision@5 | 0.12 | 0.328 | 0.136 |
dot_precision@10 | 0.08 | 0.246 | 0.076 |
dot_recall@1 | 0.32 | 0.043 | 0.37 |
dot_recall@3 | 0.52 | 0.0725 | 0.58 |
dot_recall@5 | 0.6 | 0.0929 | 0.64 |
dot_recall@10 | 0.8 | 0.1163 | 0.71 |
dot_ndcg@10 | 0.5294 | 0.3129 | 0.5477 |
dot_mrr@10 | 0.447 | 0.4759 | 0.5072 |
dot_map@100 | 0.4547 | 0.1375 | 0.4973 |
query_active_dims | 6.38 | 4.76 | 9.44 |
query_sparsity_ratio | 0.9998 | 0.9998 | 0.9997 |
corpus_active_dims | 56.0561 | 69.8866 | 51.1154 |
corpus_sparsity_ratio | 0.9982 | 0.9977 | 0.9983 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.38 |
dot_accuracy@3 | 0.54 |
dot_accuracy@5 | 0.6067 |
dot_accuracy@10 | 0.7067 |
dot_precision@1 | 0.38 |
dot_precision@3 | 0.2444 |
dot_precision@5 | 0.1947 |
dot_precision@10 | 0.134 |
dot_recall@1 | 0.2443 |
dot_recall@3 | 0.3908 |
dot_recall@5 | 0.4443 |
dot_recall@10 | 0.5421 |
dot_ndcg@10 | 0.4634 |
dot_mrr@10 | 0.4767 |
dot_map@100 | 0.3632 |
query_active_dims | 6.86 |
query_sparsity_ratio | 0.9998 |
corpus_active_dims | 57.2813 |
corpus_sparsity_ratio | 0.9981 |
Training Details
Training Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 99,000 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 10 tokens
- mean: 11.71 tokens
- max: 26 tokens
- min: 4 tokens
- mean: 131.81 tokens
- max: 450 tokens
- Samples:
query answer who played the father in papa don't preach
Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
where was the location of the battle of hastings
Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
how many puppies can a dog give birth to
Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 0.003, "query_regularizer_weight": 0 }
Evaluation Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 1,000 evaluation samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 10 tokens
- mean: 11.69 tokens
- max: 23 tokens
- min: 15 tokens
- mean: 134.01 tokens
- max: 512 tokens
- Samples:
query answer where is the tiber river located in italy
Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
what kind of car does jay gatsby drive
Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
who sings if i can dream about you
I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 0.003, "query_regularizer_weight": 0 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicatesrouter_mapping
: {'query': 'query', 'answer': 'document'}learning_rate_mapping
: {'SparseStaticEmbedding\.weight': 0.001}
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {'query': 'query', 'answer': 'document'}learning_rate_mapping
: {'SparseStaticEmbedding\.weight': 0.001}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0323 | 200 | 0.2418 | - | - | - | - | - |
0.0646 | 400 | 0.0857 | - | - | - | - | - |
0.0970 | 600 | 0.072 | - | - | - | - | - |
0.1293 | 800 | 0.062 | - | - | - | - | - |
0.1616 | 1000 | 0.0624 | 0.0867 | 0.5213 | 0.3326 | 0.5296 | 0.4612 |
0.1939 | 1200 | 0.0684 | - | - | - | - | - |
0.2262 | 1400 | 0.0776 | - | - | - | - | - |
0.2586 | 1600 | 0.0824 | - | - | - | - | - |
0.2909 | 1800 | 0.0826 | - | - | - | - | - |
0.3232 | 2000 | 0.082 | 0.1028 | 0.5108 | 0.3230 | 0.5169 | 0.4502 |
0.3555 | 2200 | 0.0869 | - | - | - | - | - |
0.3878 | 2400 | 0.0866 | - | - | - | - | - |
0.4202 | 2600 | 0.0848 | - | - | - | - | - |
0.4525 | 2800 | 0.0816 | - | - | - | - | - |
0.4848 | 3000 | 0.0769 | 0.0914 | 0.5667 | 0.3149 | 0.5786 | 0.4867 |
0.5171 | 3200 | 0.0745 | - | - | - | - | - |
0.5495 | 3400 | 0.0831 | - | - | - | - | - |
0.5818 | 3600 | 0.0764 | - | - | - | - | - |
0.6141 | 3800 | 0.0806 | - | - | - | - | - |
0.6464 | 4000 | 0.0742 | 0.0885 | 0.5512 | 0.3221 | 0.5262 | 0.4665 |
0.6787 | 4200 | 0.0739 | - | - | - | - | - |
0.7111 | 4400 | 0.0674 | - | - | - | - | - |
0.7434 | 4600 | 0.0675 | - | - | - | - | - |
0.7757 | 4800 | 0.0741 | - | - | - | - | - |
0.8080 | 5000 | 0.0686 | 0.0827 | 0.5514 | 0.3146 | 0.5632 | 0.4764 |
0.8403 | 5200 | 0.0745 | - | - | - | - | - |
0.8727 | 5400 | 0.0687 | - | - | - | - | - |
0.9050 | 5600 | 0.0637 | - | - | - | - | - |
0.9373 | 5800 | 0.0637 | - | - | - | - | - |
0.9696 | 6000 | 0.0648 | 0.0785 | 0.5292 | 0.3117 | 0.5480 | 0.4630 |
-1 | -1 | - | - | 0.5294 | 0.3129 | 0.5477 | 0.4634 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}