metadata
library_name: transformers
license: apache-2.0
base_model: secmlr/DS-Clean_QWQ-Clean_Qwen2.5-7B-Instruct_full_sft_1e-5
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: >-
ruizhe_simplier_dsNsy32kCln32k_QwQNsy32kCln32k_DSCln_QWQCln_Qwen7B_summarized_sft
results: []
ruizhe_simplier_dsNsy32kCln32k_QwQNsy32kCln32k_DSCln_QWQCln_Qwen7B_summarized_sft
This model is a fine-tuned version of secmlr/DS-Clean_QWQ-Clean_Qwen2.5-7B-Instruct_full_sft_1e-5 on the ruizhe_simplier_reasoning_ds_clean_32k, the ruizhe_simplier_reasoning_ds_noisy_32k, the ruizhe_simplier_reasoning_qwq_clean_32k and the ruizhe_simplier_reasoning_qwq_noisy_small_32k datasets.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 12
- total_train_batch_size: 48
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0