internlm3-8b-instruct-GGUF

Original Model

internlm/internlm3-8b-instruct

Run with LlamaEdge

  • LlamaEdge version: v0.16.1 and above

  • Prompt template

    • Prompt type: chatml

    • Prompt string

      <|im_start|>system
      {system_message}<|im_end|>
      <|im_start|>user
      {prompt}<|im_end|>
      <|im_start|>assistant
      
  • Context size: 128000

  • Run as LlamaEdge service

    • Chat

      wasmedge --dir .:. --nn-preload default:GGML:AUTO:internlm3-8b-instruct-Q5_K_M.gguf \
        llama-api-server.wasm \
        --prompt-template chatml \
        --ctx-size 128000 \
        --model-name internlm3-8b-instruct
      
    • Tool use

      wasmedge --dir .:. --nn-preload default:GGML:AUTO:internlm3-8b-instruct-Q5_K_M.gguf \
        llama-api-server.wasm \
        --prompt-template internlm-2-tool \
        --ctx-size 128000 \
        --model-name internlm3-8b-instruct
      
  • Run as LlamaEdge command app

    wasmedge --dir .:. \
      --nn-preload default:GGML:AUTO:internlm3-8b-instruct-Q5_K_M.gguf \
      llama-chat.wasm \
      --prompt-template chatml \
      --ctx-size 32000
    

Quantized GGUF Models

Name Quant method Bits Size Use case
internlm3-8b-instruct-Q2_K.gguf Q2_K 2 3.45 GB smallest, significant quality loss - not recommended for most purposes
internlm3-8b-instruct-Q3_K_L.gguf Q3_K_L 3 4.73 GB small, substantial quality loss
internlm3-8b-instruct-Q3_K_M.gguf Q3_K_M 3 4.39 GB very small, high quality loss
internlm3-8b-instruct-Q3_K_S.gguf Q3_K_S 3 3.99 GB very small, high quality loss
internlm3-8b-instruct-Q4_0.gguf Q4_0 4 5.09 GB legacy; small, very high quality loss - prefer using Q3_K_M
internlm3-8b-instruct-Q4_K_M.gguf Q4_K_M 4 5.36 GB medium, balanced quality - recommended
internlm3-8b-instruct-Q4_K_S.gguf Q4_K_S 4 5.12 GB small, greater quality loss
internlm3-8b-instruct-Q5_0.gguf Q5_0 5 6.13 GB legacy; medium, balanced quality - prefer using Q4_K_M
internlm3-8b-instruct-Q5_K_M.gguf Q5_K_M 5 6.26 GB large, very low quality loss - recommended
internlm3-8b-instruct-Q5_K_S.gguf Q5_K_S 5 6.13 GB large, low quality loss - recommended
internlm3-8b-instruct-Q6_K.gguf Q6_K 6 7.23 GB very large, extremely low quality loss
internlm3-8b-instruct-Q8_0.gguf Q8_0 8 9.36 GB very large, extremely low quality loss - not recommended
internlm3-8b-instruct-f16.gguf f16 16 17.6 GB

Quantized with llama.cpp b4497

Downloads last month
4
GGUF
Model size
8.8B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for second-state/internlm3-8b-instruct-GGUF

Quantized
(18)
this model