nli-professional-status

This model is a fine-tuned version of EuroBERT/EuroBERT-610m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5105
  • Accuracy: 0.8906
  • Precision Binary: 0.5169
  • Recall Binary: 0.3770
  • F1 Binary: 0.4360
  • Precision Micro: 0.8906
  • Recall Micro: 0.8906
  • F1 Micro: 0.8906
  • F1 Macro: 0.6877
  • Pr Auc: 0.8671
  • Cohen Kappa: 0.3771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Binary Recall Binary F1 Binary Precision Micro Recall Micro F1 Micro F1 Macro Pr Auc Cohen Kappa
0.4706 1.0 544 0.3099 0.8925 0.5472 0.2377 0.3314 0.8925 0.8925 0.8925 0.6365 0.8528 0.2827
0.3256 2.0 1088 0.4521 0.8998 0.6275 0.2623 0.3699 0.8998 0.8998 0.8998 0.6578 0.8660 0.3253
0.2073 3.0 1632 0.5105 0.8906 0.5169 0.3770 0.4360 0.8906 0.8906 0.8906 0.6877 0.8671 0.3771

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
34
Safetensors
Model size
609M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for selsar/nli-professional-status

Finetuned
(15)
this model