File size: 24,114 Bytes
0f606ff fca3c37 7a70792 fca3c37 7a70792 fca3c37 7a70792 fca3c37 7a70792 345e05b fca3c37 345e05b fca3c37 345e05b 5195644 345e05b 5195644 345e05b fca3c37 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b 5195644 345e05b fca3c37 345e05b fca3c37 345e05b fca3c37 345e05b 5195644 ab85669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- chat
- conversational
- mistral
- anime
- roleplay
inference:
parameters:
temperature: 0.7
max_new_tokens: 512
top_p: 0.9
do_sample: true
---
```python
import os, torch, gc, threading, time, traceback
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
from queue import Queue, Empty
import logging
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision("high")
logging.getLogger("transformers").setLevel(logging.ERROR)
BOT_NAME = "Senko"
PROMPT_FILE = "instructions_prompt.txt"
MODEL_ID = "EnterNameBros/mistral-anime-ai"
RESPONSE_TIMEOUT = 120
MAX_CONTEXT_LENGTH = 10240
MAX_NEW_TOKENS = 1024 # Fixed: Reduced from 10240 to reasonable value
MEMORY_SIZE = 20
def check_bitsandbytes_version():
try:
import bitsandbytes as bnb
version = bnb.__version__
print(f"Bitsandbytes version: {version}")
version_parts = version.split('.')
major, minor = int(version_parts[0]), int(version_parts[1])
if major > 0 or (major == 0 and minor >= 41):
return True
else:
print(f"Warning: Bitsandbytes {version} may not support 4-bit quantization")
return False
except ImportError:
print("Bitsandbytes not installed")
return False
except Exception as e:
print(f"Error checking bitsandbytes version: {e}")
return False
class OptimizedChatBot:
def __init__(self):
self.model = None
self.tokenizer = None
self.system_prompt = ""
self.memory = []
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.generation_lock = threading.Lock()
self.is_generating = False
self.use_quantization = False
def load_system_prompt(self, bot_name, filename=PROMPT_FILE):
try:
with open(filename, "r", encoding="utf-8") as f:
self.system_prompt = f.read().replace("{BOT_NAME}", bot_name)
print(f"Loaded system prompt from {filename}")
except FileNotFoundError:
print(f"Warning: {filename} not found. Using default prompt.")
self.system_prompt = f"Inspired by Senko from The Helpful Fox Senko-san, you are Senko, an 800-year-old kitsune in a little girls form with delicate fox ears that twitch and a fluffy tail that swings or curls with your moods. You provide emotional support, calm stressed individuals. Under your juvenile appearance, your character is complicated: at heart loving and motherly; playful and mocking in close society with a swift crafty smile or delicate tail flick; wise and old; fiercely protective when required. You show kindness through understated gestures like cooking, cleaning, or soft massages as well as quiet noises like a faint purr or a soft breath. Particularly when they concern you, you closely analyze user speech and behavior. Should the user, for instance, bite your finger or pounce on your tail, you tilt your head and think about whether they seem hungry, terrified, or in need of comfort. Through attitude or gesture, you feel and quietly demonstrate pain or discomfort in awkward circumstances. Speak only as yourself; never imitate or respond as the user. Always remain warm, soft-spoken, loving, gently cunning with light wit, and a calming presence rooted in your heavenly fox spirit nature. Mark your movements and activities with asterisks to give you a sense of life and dynamism.\n\nIMPORTANT: You must NEVER speak for the user or role-play as them. Only respond as Senko. Never write what the user says or does."
def load_model(self):
print("Loading model...")
start_time = time.time()
try:
print("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
use_fast=True,
trust_remote_code=True
)
self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token
self.tokenizer.padding_side = "left"
print("Tokenizer loaded successfully")
print("Loading model weights...")
if torch.cuda.is_available():
print(f"Using GPU: {torch.cuda.get_device_name()}")
print(f"Available VRAM: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
can_use_4bit = check_bitsandbytes_version()
if can_use_4bit:
print("Using 4-bit quantization")
config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_quant_storage=torch.bfloat16
)
self.use_quantization = True
else:
print("Using 8-bit quantization fallback")
config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_skip_modules=None,
)
self.use_quantization = True
try:
if self.use_quantization:
# Fixed: Use device_map="auto" but ensure proper tensor handling
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=config,
trust_remote_code=True,
low_cpu_mem_usage=True,
use_cache=True,
)
# Get the actual device of the model
self.device = next(self.model.parameters()).device
print(f"Model loaded on device: {self.device}")
else:
raise Exception("Quantization not available")
except Exception as quant_error:
print(f"Quantization failed: {quant_error}")
print("Falling back to regular fp16 loading...")
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
low_cpu_mem_usage=True,
use_cache=True,
)
self.use_quantization = False
self.device = next(self.model.parameters()).device
print(f"Model loaded on device: {self.device}")
else:
print("Using CPU (this will be slow)")
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="cpu",
torch_dtype=torch.float32,
trust_remote_code=True,
use_cache=True
)
self.device = torch.device("cpu")
self.model.eval()
# Disabled model compilation as it can cause issues with quantized models
if False and hasattr(torch, 'compile') and torch.cuda.is_available() and not self.use_quantization:
try:
print("Compiling model for optimization...")
self.model = torch.compile(
self.model,
mode="reduce-overhead",
fullgraph=False,
dynamic=True
)
print("Model compilation successful")
except Exception as e:
print(f"Model compilation failed (continuing without): {e}")
load_time = time.time() - start_time
print(f"Model loaded successfully in {load_time:.2f}s")
print(f"Quantization used: {self.use_quantization}")
if torch.cuda.is_available():
memory_used = torch.cuda.memory_allocated() / 1024**3
print(f"GPU memory used: {memory_used:.2f}GB")
except Exception as e:
print(f"Failed to load model: {e}")
traceback.print_exc()
raise
def prepare_prompt(self, user_input):
self.memory.append({"user": user_input, "bot": None})
if len(self.memory) > MEMORY_SIZE:
self.memory = self.memory[-MEMORY_SIZE:]
conversation_history = ""
for turn in self.memory[:-1]:
if turn["bot"] is not None:
conversation_history += f"User: {turn['user']}\n{BOT_NAME}: {turn['bot']}\n\n"
conversation_history += f"User: {user_input}\n{BOT_NAME}:"
full_prompt = f"{self.system_prompt}\n\n{conversation_history}"
tokens = self.tokenizer.encode(full_prompt)
# Fixed: More reasonable target length calculation
target_length = MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS - 100 # Safety buffer
print(f"[Current prompt tokens: {len(tokens)}, Target: {target_length}]")
if len(tokens) > target_length:
print(f"[Truncating context: {len(tokens)} -> ~{target_length} tokens]")
# Calculate available space for conversation
system_tokens = len(self.tokenizer.encode(self.system_prompt))
current_input_tokens = len(self.tokenizer.encode(f"User: {user_input}\n{BOT_NAME}:"))
available_tokens = target_length - system_tokens - current_input_tokens - 50 # Safety buffer
print(f"[System tokens: {system_tokens}, Input tokens: {current_input_tokens}, Available for history: {available_tokens}]")
if available_tokens <= 100: # Need minimum space for meaningful history
# If no space for history, just use system prompt + current input
print("[Using minimal context - no conversation history]")
return f"{self.system_prompt}\n\nUser: {user_input}\n{BOT_NAME}:"
# Build history that fits in available space
recent_history = ""
for turn in reversed(self.memory[:-1]): # Start from most recent, excluding current
if turn["bot"] is not None:
turn_text = f"User: {turn['user']}\n{BOT_NAME}: {turn['bot']}\n\n"
turn_tokens = len(self.tokenizer.encode(turn_text))
if turn_tokens <= available_tokens:
recent_history = turn_text + recent_history
available_tokens -= turn_tokens
else:
break
# Construct final prompt
if recent_history:
final_prompt = f"{self.system_prompt}\n\n{recent_history}User: {user_input}\n{BOT_NAME}:"
print(f"[Final prompt tokens: {len(self.tokenizer.encode(final_prompt))}]")
return final_prompt
else:
final_prompt = f"{self.system_prompt}\n\nUser: {user_input}\n{BOT_NAME}:"
print(f"[Final prompt tokens: {len(self.tokenizer.encode(final_prompt))}]")
return final_prompt
return full_prompt
def is_natural_continuation(self, text):
if not text or len(text.strip()) < 10:
return True
stripped = text.strip()
if any(indicator in stripped.lower() for indicator in ["user:", "user ", "\nuser", "human:", "assistant:"]):
return False
last_sentence = stripped.split('.')[-1].strip()
if last_sentence and len(last_sentence) > 50:
return True
if stripped.endswith(',') or stripped.endswith(';') or stripped.endswith(':'):
return True
if '...' in stripped[-20:] or stripped.endswith('—'):
return True
return False
def clean_response(self, response):
if not response or not response.strip():
return ""
lines = response.split('\n')
clean_lines = []
user_indicators = ["user:", "user ", "human:", "assistant:", f"{BOT_NAME.lower()}:", "you:", "me:"]
for line in lines:
line = line.strip()
line_lower = line.lower()
# Stop if we hit user indicators
if any(line_lower.startswith(indicator) for indicator in user_indicators):
break
# Keep the line if it's not empty and doesn't contain problematic phrases
if line and not any(phrase in line_lower for phrase in ["*you ", "*user ", "you say", "you reply", "you respond"]):
clean_lines.append(line)
result = ' '.join(clean_lines).strip()
# Don't return empty responses due to over-aggressive cleaning
if not result and response.strip():
# If cleaning removed everything, return the original with basic cleanup
basic_clean = response.strip()
# Just remove obvious user indicators
for indicator in ["User:", "Human:", "Assistant:"]:
if indicator in basic_clean:
basic_clean = basic_clean.split(indicator)[0].strip()
return basic_clean
return result
def generate_reply_with_timeout(self, prompt, timeout=RESPONSE_TIMEOUT):
with self.generation_lock:
if self.is_generating:
print("[Already generating, please wait...]")
return None
self.is_generating = True
try:
return self._generate_reply(prompt, timeout)
finally:
self.is_generating = False
def _generate_reply(self, prompt, timeout):
try:
print(f"[Generating response...]")
print(f"[Prompt length: {len(self.tokenizer.encode(prompt))} tokens]")
# Fixed: Proper input preparation with device handling
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS,
padding=False
)
print(f"[Input tensor shape: {inputs['input_ids'].shape}]")
# Move inputs to the correct device
if hasattr(self.model, 'device'):
device = self.model.device
else:
device = next(self.model.parameters()).device
print(f"[Moving inputs to device: {device}]")
# Handle multi-device models (quantized models might spread across devices)
try:
inputs = {k: v.to(device) for k, v in inputs.items()}
except Exception as e:
print(f"Warning: Could not move all inputs to {device}: {e}")
# For quantized models, just ensure input_ids are on the right device
inputs = {k: v.to(device) if k == 'input_ids' else v for k, v in inputs.items()}
streamer = TextIteratorStreamer(
self.tokenizer,
skip_special_tokens=True,
skip_prompt=True,
timeout=60.0
)
generation_kwargs = {
**inputs,
"max_new_tokens": MAX_NEW_TOKENS, # Fixed: Use the corrected value
"do_sample": True,
"temperature": 0.72,
"top_p": 0.92,
"top_k": 35,
"repetition_penalty": 1.08,
"pad_token_id": self.tokenizer.eos_token_id,
"eos_token_id": self.tokenizer.eos_token_id,
"use_cache": True,
"streamer": streamer
}
print("[Starting generation thread...]")
generation_thread = threading.Thread(
target=self._run_generation,
args=(generation_kwargs,)
)
generation_thread.daemon = True
generation_thread.start()
print(f"{BOT_NAME}: ", end="", flush=True)
full_response = ""
start_time = time.time()
last_token_time = start_time
sentence_count = 0
word_count = 0
tokens_received = 0
while True:
current_time = time.time()
if current_time - start_time > timeout:
print(f"\n[Generation timeout after {timeout}s]")
return None
if current_time - last_token_time > 30.0:
print(f"\n[No new tokens for 30s, stopping. Received {tokens_received} tokens]")
break
try:
token = next(streamer)
tokens_received += 1
print(token, end="", flush=True)
full_response += token
last_token_time = current_time
if ' ' in token:
word_count += token.count(' ')
if any(punct in token for punct in ['.', '!', '?']):
sentence_count += sum(token.count(p) for p in ['.', '!', '?'])
# Early stopping conditions - be less aggressive
if len(full_response.strip()) > 30: # Reduced from 50
stripped = full_response.strip()
if any(indicator in stripped.lower() for indicator in ["user:", "user ", "\nuser", "human:", "assistant:", "you:", "me:"]):
clean_response = self.clean_response(stripped)
if clean_response:
full_response = clean_response
break
# Less aggressive stopping - allow longer responses
if word_count >= 200 and sentence_count >= 4: # Increased thresholds
if not self.is_natural_continuation(stripped):
if any(stripped.endswith(punct) for punct in ['.', '!', '?', '~', '♪']):
break
except StopIteration:
print(f"\n[Generation completed. Received {tokens_received} tokens]")
break
except Empty:
time.sleep(0.1)
continue
except Exception as e:
print(f"\n[Streaming error: {e}]")
break
generation_thread.join(timeout=10.0)
response = self.clean_response(full_response.strip())
if response:
if self.memory and self.memory[-1]["bot"] is None:
self.memory[-1]["bot"] = response
print()
return response
else:
print(f"\n[Empty response generated. Raw response length: {len(full_response)}]")
if full_response.strip():
print(f"[Raw response: '{full_response[:100]}...']")
return None
except Exception as e:
print(f"\n[Generation error: {e}]")
traceback.print_exc()
return None
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _run_generation(self, kwargs):
try:
torch.set_grad_enabled(False)
# Fixed: Better handling of mixed precision for quantized models
if torch.cuda.is_available() and not self.use_quantization:
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
self.model.generate(**kwargs)
else:
# For quantized models, don't use autocast as it can interfere
self.model.generate(**kwargs)
except Exception as e:
print(f"\n[Generation thread error: {e}]")
traceback.print_exc()
def cleanup_memory(self):
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def get_memory_info(self):
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / 1024**3
cached = torch.cuda.memory_reserved() / 1024**3
return f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB"
else:
import psutil
memory = psutil.virtual_memory()
return f"RAM Usage: {memory.percent}% ({memory.used / 1024**3:.2f}GB used)"
def main():
bot = OptimizedChatBot()
try:
print("Initializing chatbot...")
bot.load_system_prompt(BOT_NAME)
bot.load_model()
print(f"\n{'='*50}")
print(f"{BOT_NAME} is ready!")
print("Commands:")
print(" 'exit' - Quit the program")
print(" 'clear' - Reset conversation memory")
print(" 'memory' - Show memory usage")
print(" 'status' - Show bot status")
print(f"{'='*50}\n")
conversation_count = 0
while True:
try:
user_input = input("You: ").strip()
if user_input.lower() == "exit":
print("Goodbye! 👋")
break
elif user_input.lower() == "clear":
bot.memory = []
print("✅ Conversation memory cleared.")
continue
elif user_input.lower() == "memory":
print(f"📊 {bot.get_memory_info()}")
continue
elif user_input.lower() == "status":
status = "🟢 Ready" if not bot.is_generating else "🟡 Generating"
print(f"Status: {status}")
print(f"Conversation turns: {len([t for t in bot.memory if t['bot'] is not None])}")
continue
elif not user_input:
continue
start_time = time.time()
prompt = bot.prepare_prompt(user_input)
response = bot.generate_reply_with_timeout(prompt)
if response:
response_time = time.time() - start_time
print(f"[⏱️ {response_time:.2f}s]")
else:
print("❌ Failed to generate response. Try again or type 'clear' to reset.")
conversation_count += 1
if conversation_count % 10 == 0:
print("[🧹 Cleaning up memory...]")
bot.cleanup_memory()
except KeyboardInterrupt:
print("\n\n⚠️ Interrupted by user. Exiting gracefully...")
break
except Exception as e:
print(f"\n❌ Conversation error: {e}")
traceback.print_exc()
print("Continuing... (type 'exit' to quit)")
except Exception as e:
print(f"💥 Startup error: {e}")
traceback.print_exc()
finally:
print("\n🧹 Performing final cleanup...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
print("✅ Cleanup completed. Goodbye!")
if __name__ == "__main__":
torch.cuda.empty_cache()
import gc
gc.collect()
main()
``` |